Citation: | CHEN Xiao-bo, LI Song, ZHAO Guo-ying, LIU Hong-Zhen, GUO Jing-hua, MA Yu, WANG Ke-zhi, GENG Zhu-feng. Luminescence enhancement mechanism of Er3+ ions by Ag@SiO2 core-shell nanostructure in tellurite glass[J]. Chinese Optics, 2022, 15(2): 224-232. doi: 10.37188/CO.2021-0142 |
[1] |
XUE B, WANG D, ZHANG Y L, et al. Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles via a dye sensitization strategy[J]. Journal of Materials Chemistry C, 2019, 7(28): 8607-8615. doi: 10.1039/C9TC02293G
|
[2] |
LIN L, YU ZH P, WANG ZH ZH, et al. Plasmon-enhanced luminescence of Ag@SiO2/β-NaYF4: Tb3+ nanocomposites via absorption & emission matching[J]. Materials Chemistry and Physics, 2018, 220: 278-285. doi: 10.1016/j.matchemphys.2018.08.076
|
[3] |
ZHAO G Y, XU L ZH, MENG SH H, et al. Facile preparation of plasmon enhanced near-infrared photoluminescence of Er3+-doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier[J]. Journal of Luminescence, 2019, 206: 164-168. doi: 10.1016/j.jlumin.2018.10.026
|
[4] |
PARK W, LU D W, AHN S M. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 2015, 44(10): 2940-2962. doi: 10.1039/C5CS00050E
|
[5] |
ZHAO J Y, CHENG Y Q, SHEN H M, et al. Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds[J]. Scientific Reports, 2018, 8(1): 3605. doi: 10.1038/s41598-018-22019-z
|
[6] |
CHEN G X, DING CH J, WU E, et al. Tip-enhanced upconversion luminescence in Yb3+-Er3+ codoped NaYF4 nanocrystals[J]. The Journal of Physical Chemistry C, 2015, 119(39): 22604-22610. doi: 10.1021/acs.jpcc.5b04387
|
[7] |
HE J J, ZHENG W, LIGMAJER F, et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2: Yb3+, Er3+ hybrid core-shell-satellite nanostructures[J]. Light:Science &Applications, 2017, 6(5): e16217.
|
[8] |
WANG D, XUE B, TU L P, et al. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures[J]. Chinese Optics, 2021, 14(2): 418-430. doi: 10.37188/CO.2020-0097
|
[9] |
YANG ZH, Ni W H, KOU X SH, et al. Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18895-18903. doi: 10.1021/jp8069699
|
[10] |
GEDDES C D, PARFENOV A, ROLL D, et al. Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities[J]. Journal of Fluorescence, 2003, 13(3): 267-276. doi: 10.1023/A:1025046101335
|
[11] |
WANG Q R, ZHANG J, SANG X, et al. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods[J]. Journal of Luminescence, 2018, 204: 284-288. doi: 10.1016/j.jlumin.2018.08.033
|
[12] |
XU W, LEE T K, MOON B S, et al. Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification[J]. Advanced Optical Materials, 2018, 6(6): 1701119. doi: 10.1002/adom.201701119
|
[13] |
RAJESH D, DOUSTI M R, AMJAD R J, et al. Enhancement of down- and upconversion intensities in Er3+/Yb3+ co-doped oxyfluoro tellurite glasses induced by Ag species and nanoparticles[J]. Journal of Luminescence, 2017, 192: 250-255. doi: 10.1016/j.jlumin.2017.06.059
|
[14] |
DAS A, MAO CH CH, CHO S, et al. Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures[J]. Nature Communications, 2018, 9(1): 4828. doi: 10.1038/s41467-018-07284-w
|
[15] |
FARES H, ELHOUICHET H, GELLOZ B, et al. Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment[J]. Journal of Applied Physics, 2014, 116(12): 123504. doi: 10.1063/1.4896363
|
[16] |
徐光宪. 稀土[M]. 2版. 北京: 冶金工业出版社, 1995.
XU G X. Rare Earth[M]. 2nd ed. Beijing: Metallurgical Industry Press, 1995. (in Chinese)
|
[17] |
郭光灿, 金怀诚, 谢建平. 光学原子物理[M]. 合肥: 中国科学技术大学出版社, 1990.
GUO G C, JIN H CH, XIE J P. Optical Atomic Physics[M]. Hefei: China University of Science and Technology Press, 1990. (in Chinese)
|
[18] |
王永生, 张雪强, 张光寅, 等. BaFCl: Eu2+中F色心的浓度和光激励截面与温度和紫外线的辐照波长的关系[J]. 发光学报,1996,17(1):6-11. doi: 10.3321/j.issn:1000-7032.1996.01.002
WANG Y SH, ZHANG X Q, ZHANG G Y, et al. The dependence of density and photostimulable cross section of F color centers in BaFCl: Eu2+ phosphors on temperature and UV-irradiation wavelength[J]. Chinese Journal of Luminescence, 1996, 17(1): 6-11. (in Chinese) doi: 10.3321/j.issn:1000-7032.1996.01.002
|
[19] |
彭皓, 杨方, 杜慧, 等. 基于Er3+掺杂上转换纳米粒子的生物成像研究进展[J]. 分析化学,2021,49(7):1106-1120.
PENG H, YANG F, DU H, et al. Advances of Er3+ doped upconversion nanoparticles for biological imaging[J]. Chinese Journal of Analytical Chemistry, 2021, 49(7): 1106-1120. (in Chinese)
|
[20] |
安西涛, 王月, 牟佳佳, 等. 超薄金壳包覆NaYF4: Yb, Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J]. 发光学报,2018,39(11):1505-1512. doi: 10.3788/fgxb20183911.1505
AN X T, WANG Y, MU J J, et al. Controllable synthesis and surface-enhanced upconversion luminescence of ultra-thin gold shell coated NaYF4: Yb, Er@SiO2 nanostructures[J]. Chinese Journal of Luminescence, 2018, 39(11): 1505-1512. (in Chinese) doi: 10.3788/fgxb20183911.1505
|
[21] |
胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学,2020,37(3):245-255. doi: 10.11944/j.issn.1000-0518.2020.03.190350
HU J L, XUE D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 245-255. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.03.190350
|
[22] |
李子娟, 安雪, 牛昊, 等. 高温溶剂热分解法合成NaYF4: Yb3+, Er3+纳米粒子及其光谱特性[J]. 发光学报,2020,41(9):1128-1136. doi: 10.37188/fgxb20204109.1128
LI Z J, AN X, NIU H, et al. Synthesis and spectral properties of NaYF4: Yb3+, Er3+ nanoparticles via thermolysis method[J]. Chinese Journal of Luminescence, 2020, 41(9): 1128-1136. (in Chinese) doi: 10.37188/fgxb20204109.1128
|
[23] |
赵兵洁, 赵金宝, 齐小花, 等. 基于BHHCT-Eu3+@SiO2荧光稀土二氧化硅纳米颗粒的免疫层析试纸条检测卡那霉素[J]. 分析化学,2017,45(10):1467-1474. doi: 10.11895/j.issn.0253-3820.170015
ZHAO B J, ZHAO J B, QI X H, et al. Development of immunochromatographic strips based on covalently conjugated BHHCT-Eu3+@SiO2 for rapid and quantitative detection of kanamycin[J]. Chinese Journal of Analytical Chemistry, 2017, 45(10): 1467-1474. (in Chinese) doi: 10.11895/j.issn.0253-3820.170015
|