Volume 15 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
CHEN Xiao-bo, LI Song, ZHAO Guo-ying, LIU Hong-Zhen, GUO Jing-hua, MA Yu, WANG Ke-zhi, GENG Zhu-feng. Luminescence enhancement mechanism of Er3+ ions by Ag@SiO2 core-shell nanostructure in tellurite glass[J]. Chinese Optics, 2022, 15(2): 224-232. doi: 10.37188/CO.2021-0142
Citation: CHEN Xiao-bo, LI Song, ZHAO Guo-ying, LIU Hong-Zhen, GUO Jing-hua, MA Yu, WANG Ke-zhi, GENG Zhu-feng. Luminescence enhancement mechanism of Er3+ ions by Ag@SiO2 core-shell nanostructure in tellurite glass[J]. Chinese Optics, 2022, 15(2): 224-232. doi: 10.37188/CO.2021-0142

Luminescence enhancement mechanism of Er3+ ions by Ag@SiO2 core-shell nanostructure in tellurite glass

Funds:  Supported by the National Natural Science Foundation of China (No. 51972020, No. 51472028);the Fundamental Research Funds of Central Universities of China (No. 2017TZ01)
More Information
  • Corresponding author: chen78xb@sina.com
  • Received Date: 17 Jul 2021
  • Rev Recd Date: 09 Aug 2021
  • Accepted Date: 18 Nov 2021
  • Available Online: 18 Nov 2021
  • Publish Date: 21 Mar 2022
  • In this paper, we introduce a prefabricabed Ag@SiO2 nanostructure directly into tellurite luminescence glass composed of 70TeO2-25ZnO-5La2O3-0.5Er2O3. We find that the maximum enhancement of visible and infrared excitation spectra intensity of (A) Ag (1.6×10−6 mol/L)@SiO2(40 nm) @Er3+ (0.5%): tellurite glass relative to (B) Er3+ (0.5%): tellurite glass is about 149.0% and 161.5%, respectively. Their maximum enhancement of visible and infrared luminescence spectra intensity is 155.2% and 151.6%, respectively. We also find that sample (A) has a larger lifespan compared to sample (B). Because the surface plasmon absorption peak of Ag@SiO2 is located at 546.0 nm, it completely resonates with the luminescence peak of erbium ions which are also at 546.0 nm. Therefore, the resonance enhancement action of Ag@SiO2 on the luminescence of erbium-doped tellurite luminescence glass is significant. Thanks to the advantages of the step-by-step realization of the silver nano core-shell structure and the production of glass, it can successfully and smoothly control the size of Ag@SiO2. It also has the advantage of strong operability in the manufacturing process of Ag@SiO2@Er: telluride luminescence glass. Its costs are also minor. Moreover, it can not only ensure that the silver is not oxidized, but it can also successfully control the distance between the rare earth ion luminescence center and the silver surface plasma. It can also successfully reduce the back energy transfer, which allows the silver surface plasma to more effectively enhance the intensity of photo-luminescence.

     

  • loading
  • [1]
    XUE B, WANG D, ZHANG Y L, et al. Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles via a dye sensitization strategy[J]. Journal of Materials Chemistry C, 2019, 7(28): 8607-8615. doi: 10.1039/C9TC02293G
    [2]
    LIN L, YU ZH P, WANG ZH ZH, et al. Plasmon-enhanced luminescence of Ag@SiO2/β-NaYF4: Tb3+ nanocomposites via absorption & emission matching[J]. Materials Chemistry and Physics, 2018, 220: 278-285. doi: 10.1016/j.matchemphys.2018.08.076
    [3]
    ZHAO G Y, XU L ZH, MENG SH H, et al. Facile preparation of plasmon enhanced near-infrared photoluminescence of Er3+-doped Bi2O3-B2O3-SiO2 glass for optical fiber amplifier[J]. Journal of Luminescence, 2019, 206: 164-168. doi: 10.1016/j.jlumin.2018.10.026
    [4]
    PARK W, LU D W, AHN S M. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 2015, 44(10): 2940-2962. doi: 10.1039/C5CS00050E
    [5]
    ZHAO J Y, CHENG Y Q, SHEN H M, et al. Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds[J]. Scientific Reports, 2018, 8(1): 3605. doi: 10.1038/s41598-018-22019-z
    [6]
    CHEN G X, DING CH J, WU E, et al. Tip-enhanced upconversion luminescence in Yb3+-Er3+ codoped NaYF4 nanocrystals[J]. The Journal of Physical Chemistry C, 2015, 119(39): 22604-22610. doi: 10.1021/acs.jpcc.5b04387
    [7]
    HE J J, ZHENG W, LIGMAJER F, et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2: Yb3+, Er3+ hybrid core-shell-satellite nanostructures[J]. Light:Science &Applications, 2017, 6(5): e16217.
    [8]
    WANG D, XUE B, TU L P, et al. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures[J]. Chinese Optics, 2021, 14(2): 418-430. doi: 10.37188/CO.2020-0097
    [9]
    YANG ZH, Ni W H, KOU X SH, et al. Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18895-18903. doi: 10.1021/jp8069699
    [10]
    GEDDES C D, PARFENOV A, ROLL D, et al. Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities[J]. Journal of Fluorescence, 2003, 13(3): 267-276. doi: 10.1023/A:1025046101335
    [11]
    WANG Q R, ZHANG J, SANG X, et al. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods[J]. Journal of Luminescence, 2018, 204: 284-288. doi: 10.1016/j.jlumin.2018.08.033
    [12]
    XU W, LEE T K, MOON B S, et al. Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification[J]. Advanced Optical Materials, 2018, 6(6): 1701119. doi: 10.1002/adom.201701119
    [13]
    RAJESH D, DOUSTI M R, AMJAD R J, et al. Enhancement of down- and upconversion intensities in Er3+/Yb3+ co-doped oxyfluoro tellurite glasses induced by Ag species and nanoparticles[J]. Journal of Luminescence, 2017, 192: 250-255. doi: 10.1016/j.jlumin.2017.06.059
    [14]
    DAS A, MAO CH CH, CHO S, et al. Over 1000-fold enhancement of upconversion luminescence using water-dispersible metal-insulator-metal nanostructures[J]. Nature Communications, 2018, 9(1): 4828. doi: 10.1038/s41467-018-07284-w
    [15]
    FARES H, ELHOUICHET H, GELLOZ B, et al. Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment[J]. Journal of Applied Physics, 2014, 116(12): 123504. doi: 10.1063/1.4896363
    [16]
    徐光宪. 稀土[M]. 2版. 北京: 冶金工业出版社, 1995.

    XU G X. Rare Earth[M]. 2nd ed. Beijing: Metallurgical Industry Press, 1995. (in Chinese)
    [17]
    郭光灿, 金怀诚, 谢建平. 光学原子物理[M]. 合肥: 中国科学技术大学出版社, 1990.

    GUO G C, JIN H CH, XIE J P. Optical Atomic Physics[M]. Hefei: China University of Science and Technology Press, 1990. (in Chinese)
    [18]
    王永生, 张雪强, 张光寅, 等. BaFCl: Eu2+中F色心的浓度和光激励截面与温度和紫外线的辐照波长的关系[J]. 发光学报,1996,17(1):6-11. doi: 10.3321/j.issn:1000-7032.1996.01.002

    WANG Y SH, ZHANG X Q, ZHANG G Y, et al. The dependence of density and photostimulable cross section of F color centers in BaFCl: Eu2+ phosphors on temperature and UV-irradiation wavelength[J]. Chinese Journal of Luminescence, 1996, 17(1): 6-11. (in Chinese) doi: 10.3321/j.issn:1000-7032.1996.01.002
    [19]
    彭皓, 杨方, 杜慧, 等. 基于Er3+掺杂上转换纳米粒子的生物成像研究进展[J]. 分析化学,2021,49(7):1106-1120.

    PENG H, YANG F, DU H, et al. Advances of Er3+ doped upconversion nanoparticles for biological imaging[J]. Chinese Journal of Analytical Chemistry, 2021, 49(7): 1106-1120. (in Chinese)
    [20]
    安西涛, 王月, 牟佳佳, 等. 超薄金壳包覆NaYF4: Yb, Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J]. 发光学报,2018,39(11):1505-1512. doi: 10.3788/fgxb20183911.1505

    AN X T, WANG Y, MU J J, et al. Controllable synthesis and surface-enhanced upconversion luminescence of ultra-thin gold shell coated NaYF4: Yb, Er@SiO2 nanostructures[J]. Chinese Journal of Luminescence, 2018, 39(11): 1505-1512. (in Chinese) doi: 10.3788/fgxb20183911.1505
    [21]
    胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学,2020,37(3):245-255. doi: 10.11944/j.issn.1000-0518.2020.03.190350

    HU J L, XUE D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 245-255. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.03.190350
    [22]
    李子娟, 安雪, 牛昊, 等. 高温溶剂热分解法合成NaYF4: Yb3+, Er3+纳米粒子及其光谱特性[J]. 发光学报,2020,41(9):1128-1136. doi: 10.37188/fgxb20204109.1128

    LI Z J, AN X, NIU H, et al. Synthesis and spectral properties of NaYF4: Yb3+, Er3+ nanoparticles via thermolysis method[J]. Chinese Journal of Luminescence, 2020, 41(9): 1128-1136. (in Chinese) doi: 10.37188/fgxb20204109.1128
    [23]
    赵兵洁, 赵金宝, 齐小花, 等. 基于BHHCT-Eu3+@SiO2荧光稀土二氧化硅纳米颗粒的免疫层析试纸条检测卡那霉素[J]. 分析化学,2017,45(10):1467-1474. doi: 10.11895/j.issn.0253-3820.170015

    ZHAO B J, ZHAO J B, QI X H, et al. Development of immunochromatographic strips based on covalently conjugated BHHCT-Eu3+@SiO2 for rapid and quantitative detection of kanamycin[J]. Chinese Journal of Analytical Chemistry, 2017, 45(10): 1467-1474. (in Chinese) doi: 10.11895/j.issn.0253-3820.170015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(788) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return