Citation: | HUO Ting-ting, ZHANG Dong-dong, SHI Xiang-lei, PAN Yu, SUN Li-jie, SU Yan-jie. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics, 2022, 15(2): 373-386. doi: 10.37188/CO.2021-0149 |
[1] |
CAI B F, YIN H, HUO T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3386-3394. doi: 10.1039/C9TC06586E
|
[2] |
LEI T, POCHOROVSKI I, BAO ZH N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method[J]. Accounts of Chemical Research, 2017, 50(4): 1096-1104. doi: 10.1021/acs.accounts.7b00062
|
[3] |
ZHANG J, LIU S Y, NSHIMIYIMANA J P, et al. Observation of van Hove singularities and temperature dependence of electrical characteristics in suspended carbon nanotube Schottky barrier transistors[J]. Nano-Micro Letters, 2018, 10(2): 25. doi: 10.1007/s40820-017-0171-3
|
[4] |
CAI B F, SU Y J, TAO Z J, et al. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets[J]. Advanced Optical Materials, 2018, 6(23): 1800791. doi: 10.1002/adom.201800791
|
[5] |
YANG L J, WANG SH, ZENG Q SH, et al.. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8): 1225-1236.
|
[6] |
HE X W, LÉONARD F, KONO J. Uncooled carbon nanotube photodetectors[J]. Advanced Optical Materials, 2015, 3(8): 989-1011. doi: 10.1002/adom.201500237
|
[7] |
MA Z, HAN J, YAO SH, et al. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating[J]. ACS Applied Materials &Interfaces, 2019, 11(12): 11736-11742.
|
[8] |
LIU Y, WEI N, ZENG Q SH, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2): 238-245. doi: 10.1002/adom.201500529
|
[9] |
TUNE D D, FLAVEL B S. Advances in carbon nanotube-silicon heterojunction solar cells[J]. Advanced Energy Materials, 2018, 8(15): 1703241. doi: 10.1002/aenm.201703241
|
[10] |
ZHOU H X, YANG M, JI CH H, et al. Excellent-performance C60/graphene/SWCNT heterojunction with light-controlled enhancement of photocurrent[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(10): 4276-4283.
|
[11] |
GONG Y P, ADHIKARI P, LIU Q F, et al. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection[J]. ACS Applied Materials &Interfaces, 2017, 9(12): 11016-11024.
|
[12] |
LI G H, SUJA M, CHEN M G, et al. Visible-blind UV photodetector based on single-walled carbon nanotube thin film/ZnO vertical heterostructures[J]. ACS Applied Materials &Interfaces, 2017, 9(42): 37094-37104.
|
[13] |
SCAGLIOTTI M, SALVATO M, DE CRESCENZI M, et al. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response[J]. Applied Nanoscience, 2018, 8(5): 1053-1058. doi: 10.1007/s13204-018-0720-1
|
[14] |
CHEN J X, OUYANG W X, YANG W, et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications[J]. Advanced Functional Materials, 2020, 30(16): 1909909. doi: 10.1002/adfm.201909909
|
[15] |
PERIYANAGOUNDER D, WEI T C, LI T Y, et al. Fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 2020, 32(2): 1904634. doi: 10.1002/adma.201904634
|
[16] |
YANG W, CHEN J X, ZHANG Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 2019, 29(18): 1808182. doi: 10.1002/adfm.201808182
|
[17] |
SALVATO M, SCAGLIOTTI M, DE CRESCENZI M, et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors[J]. Nanotechnology, 2017, 28(43): 435201. doi: 10.1088/1361-6528/aa8797
|
[18] |
KIM Y L, JUNG H Y, PARK S, et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics[J]. Nature Photonics, 2014, 8(3): 239-243. doi: 10.1038/nphoton.2014.1
|
[19] |
REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi: 10.37188/CO.2020-0189
|
[20] |
CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. (in Chinese) doi: 10.3788/co.20191205.1057
|
[21] |
LIANG CH W, ROTH S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions[J]. Nano Letters, 2008, 8(7): 1809-1812. doi: 10.1021/nl0802178
|
[22] |
LI H, LOKE W K, ZHANG Q, et al. Physical device modeling of carbon nanotube/GaAs photovoltaic cells[J]. Applied Physics Letters, 2010, 96(4): 043501. doi: 10.1063/1.3293452
|
[23] |
BEHNAM A, JOHNSON J, CHOI Y, et al. Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts[J]. Journal of Applied Physics, 2008, 103(11): 114315. doi: 10.1063/1.2938037
|
[24] |
HUO T T, YIN H, ZHOU D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(41): 15532-15539.
|
[25] |
TAO Z J, HUO T T, YIN H, et al. Self-powered near-infrared photodetector based on single-walled carbon nanotube/graphene/GaAs double heterojunctions[J]. Semiconductor Optoelectronics, 2020, 41(2): 164-168,172. (in Chinese)
|