Volume 15 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
CHE Dong-bo, WANG Ting-feng, ZHANG Shao, HAN Yue, LI Yuan-yang. Statistical characteristics of multi-channel cooperative dynamic speckle metric[J]. Chinese Optics, 2022, 15(2): 286-296. doi: 10.37188/CO.2021-0152
Citation: CHE Dong-bo, WANG Ting-feng, ZHANG Shao, HAN Yue, LI Yuan-yang. Statistical characteristics of multi-channel cooperative dynamic speckle metric[J]. Chinese Optics, 2022, 15(2): 286-296. doi: 10.37188/CO.2021-0152

Statistical characteristics of multi-channel cooperative dynamic speckle metric

Funds:  Supported by National Natural Science Foundation of China (No. 61805234); Key Research Program of Frontier Science, CAS, China (No. QYZDB-SSWSLH014)
More Information
  • Corresponding author: liyuanyang1108@163.com
  • Received Date: 31 Jul 2021
  • Rev Recd Date: 31 Aug 2021
  • Accepted Date: 03 Nov 2021
  • Available Online: 03 Nov 2021
  • Publish Date: 21 Mar 2022
  • To improve the accuracy and efficiency of the dynamic speckle metric for non-destructively detecting far-field target hit-spot intensity in a Target-In-the-Loop (TIL) system, a multi-channel cooperative detection system for acquiring speckle signals is established. The theory of dynamic speckles, the simulation model of this system and the spatial-temporal spectral fusion characteristics are also investigated. As a first step, the power spectrum is obtained by filtering, auto-correlating and Fourier transforming the intensity fluctuations of dynamic speckle detected by the point detector. Then, the feasibility of speckle-metric, obtained by multiplying the spectrum with weights, is explored to monitor the target-focused spot. As a second step, the approach of splicing the temporal signals obtained from different spatial locations on the receiving plane is proposed. Moreover, the prerequisites of this approach are listed. Finally, the effectiveness of the proposed speckle metric obtained by fusing the spectrum is verified through simulations and experiments. The results show that the speckle metric decreases with an increase in the hit-spot size, and the four-channel space-averaging metric can improve the accuracy by a factor of 2 when each group of signals is uncorrelated. Moreover, the metric obtained by spatial-temporal fusion spectrum not only guarantees accuracy but also quadruples the system’s bandwidth. Therefore, the multi-channel cooperative acquisition of the speckle metric can monitor the hit-spot change of far-field moving targets more rapidly than current solutions.

     

  • loading
  • [1]
    Stoykova E, Kang H, Kim Y, et al. Evaluation of activity from binary patterns in dynamic speckle analysis[J]. Optics and Lasers in Engineering, 2018, 111: 50-57. doi: 10.1016/j.optlaseng.2018.07.020
    [2]
    Zhang Y, Ceylan Koydemir H, Shimogawa M M, et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning[J]. Light: Science & Applications, 2018, 7(1).
    [3]
    Wan Y, Fan X, Wang S, et al. Wavemeter capable of simultaneously achieving ultra-high resolution and broad bandwidth by using Rayleigh speckle from single mode fiber[J]. Journal of Lightwave Technology, 2021, 39(7): 2223-2229. doi: 10.1109/JLT.2020.3046022
    [4]
    Mendoza-Herrera L J, Schinca D C, Scaffardi L B, et al. Measurement of latex microparticle size by dynamic speckle technique[J]. Optics and Lasers in Engineering, 2021, 140: 106528. doi: 10.1016/j.optlaseng.2020.106528
    [5]
    胡慧然, 但西佐, 赵琪涵, 等. 数字图像相关中的散斑区域自动提取研究[J]. 中国光学,2019,12(6):1329-1337. doi: 10.3788/co.20191206.1329

    Hu H R, Dan X Z, Zhao Q H. et al. Automatic extraction of speckle area in digital image correlation[J]. Chinese Optics, 2019, 12(6): 1329-1337. (in Chinese) doi: 10.3788/co.20191206.1329
    [6]
    Salter P S, Booth M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 2019, 8(1).
    [7]
    Piatrou P, Roggemann M. Beaconless stochastic parallel gradient descent laser beam control: numerical experiments[J]. Applied optics, 2007, 46(27): 6831-6842. doi: 10.1364/AO.46.006831
    [8]
    Che D, Li Y, Wu Y, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953
    [9]
    Wan Y, Wang S, Fan X, et al. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry[J]. Optics letters, 2020, 45(4): 799-802. doi: 10.1364/OL.384248
    [10]
    Budini, Nicolas, Balducci N, Mulone C, et al. Extraction of dynamic speckle activity information from digital holograms[J]. Optical Engineering, 2016, 55.12: 121716.
    [11]
    Davila A, Rayas J A. Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change[J]. Optics and Lasers in Engineering, 2020, 125(Feb.): 105856.1-105856.5.
    [12]
    Kulkarni R, Pal P, Banoth E. Spatio-temporal analysis of dynamic speckle patterns using singular value decomposition[J]. Optics and Lasers in Engineering, 2021, 142: 106588. doi: 10.1016/j.optlaseng.2021.106588
    [13]
    邵珩, 周勇, 祁俊峰, 等. GPU加速电子剪切散斑干涉图像处理[J]. 液晶与显示,2019,34(10):1021-1029. doi: 10.3788/YJYXS20193410.1021

    Shao H, Zhou Y, Qi J F. et al. GPU accelerated image processing for electronic speckle pattern shearing interferometry[J]. Chinese Journal of Liquid Crystals and Displays., 2019, 34(10): 1021-1029. (in Chinese) doi: 10.3788/YJYXS20193410.1021
    [14]
    Sawatari T, Elek A C. Image plane detection using laser speckle patterns[J]. Applied optics, 1973, 12(4): 881-883. doi: 10.1364/AO.12.000881
    [15]
    阳志强, 吴振森, 张耿. 旋转圆锥目标动态散斑的时间相关函数[J]. 光学学报,2013,33(10):1029001. doi: 10.3788/AOS201333.1029001

    Yang Z Q, Wu Z S, Zhang Q, et al. Time correlation function of dynamic speckle of rotating cone target[J]. Acta Optica Sinica, 2013, 33(10): 1029001. (in Chinese) doi: 10.3788/AOS201333.1029001
    [16]
    Xu X, Ren X, Zhong F, et al. Optimization of speckle pattern based on integer programming method[J]. Optics and Lasers in Engineering, 2020, 133: 106100. doi: 10.1016/j.optlaseng.2020.106100
    [17]
    Skipetrov S E, Peuser J, Cerbino R, et al. Noise in laser speckle correlation and imaging techniques[J]. Optics express, 2010, 18(14): 14519-14534. doi: 10.1364/OE.18.014519
    [18]
    Stoykova E, Berberova N, Kim Y, et al. Dynamic speckle analysis with smoothed intensity-based activity maps[J]. Optics &Lasers in Engineering, 2017, 93: 55-65.
    [19]
    Semenov D V, Miridonov S V, Nippolainen E, et al. Statistical properties of dynamic speckles formed by a deflecting laser beam[J]. Optics express, 2008, 16(2): 1238-1249. doi: 10.1364/OE.16.001238
    [20]
    Miridonov S V, Sidorov I, Nippolainen E, et al. Accuracy of measuring systems using dynamic speckles[J]. JOSA A, 2009, 26(4): 745-753. doi: 10.1364/JOSAA.26.000745
    [21]
    Vorontsov M A, Kolosov V V, Polnau E. Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation[J]. Applied optics, 2009, 48(1): A13-A29. doi: 10.1364/AO.48.000A13
    [22]
    Vorontsov M, Weyrauch T, Lachinova S, et al. Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining[J]. Optics letters, 2012, 37(14): 2802-2804. doi: 10.1364/OL.37.002802
    [23]
    Yin W, Zhong J, Feng S, et al. Composite deep learning framework for absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation[J]. Journal of Physics Photonics, 2020, 2: 45009. doi: 10.1088/2515-7647/abbcd9
    [24]
    张亚超, 刘鹏, 王晓光, 等. X射线散射法测量Wolter-I型掠入射望远镜的表面粗糙度[J]. 中国光学,2019,12(003):587-595. doi: 10.3788/co.20191203.0587

    Zhang Y C, Liu P, Wang X G. et al. Characterizing curved surface roughness of Wolter-ⅠX-ray grazing incidence telescope[J]. Chinese Optics, 2019, 12(003): 587-595. (in Chinese) doi: 10.3788/co.20191203.0587
    [25]
    Rytov S M, Kravtsov Y A, Tatarskii V I. Principles of statistical radiophysics. 4. Wave propagation through random media[M]. 1989.
    [26]
    Vorontsov M A. Speckle effects in target-in-the-loop laser beam projection systems[J]. Advanced Optical Technologies, 2013, 2(5-6): 369-395.
    [27]
    Yu, Z. , Guo, J., Liu, L., Wang, et al. Statistical properties of dynamic speckles in application to laser focusing systems[J]. Applied Optics, 2019, 58(12): 3310-3316. doi: 10.1364/AO.58.003310
    [28]
    Dainty J C, Ennos A E, Françon M, et al. Laser Speckle and Related Phenomena[J]. Optica Acta International Journal of Optics, 1976, 23(10): 842-843.
    [29]
    Rabal H J, Arizaga R, Cap N L, et al. Numerical model for dynamic speckle: an approach using the movement of the scatterers[J]. Journal of Optics A:Pure and Applied Optics, 2003, 5(5): S381. doi: 10.1088/1464-4258/5/5/396
    [30]
    钱伟, 蒋明. 数字图像相关方法中数字散斑场的制作与应用研究[J]. 液晶与显示,2020(8):861-869. doi: 10.37188/YJYXS20203508.0861

    Qian W, Jiang M. Design and application of digital speckle patterns in digital image correlation method[J]. Chinese Journal of Liquid Crystals and Displays, 2020(8): 861-869. (in Chinese) doi: 10.37188/YJYXS20203508.0861
    [31]
    S. A. Akhmanov, Y. E. D’yakov and A. S. Chirkin, Introduction to Statistical Radiophisics and Optics[M]. 1981
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(980) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return