Volume 15 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, CHEN Fei, ZHENG Chang-bin. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. doi: 10.37188/CO.2021-0160
Citation: WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, CHEN Fei, ZHENG Chang-bin. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. doi: 10.37188/CO.2021-0160

Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon

Funds:  Supported by National Key R&D Program Funded Project (No. 2018YFE0203203); Innovative Cross Team of the Chinese Academy of Sciences (No. JCTD-2020-13); Major Innovation Project of Changchun Institute of Optics and Mechanics, Chinese Academy of Sciences (No. E10302Y3M0)
More Information
  • Corresponding author: zhengchangbin@ciomp.ac.cn
  • Received Date: 16 Aug 2021
  • Rev Recd Date: 24 Sep 2021
  • Accepted Date: 18 Nov 2021
  • Available Online: 18 Nov 2021
  • Publish Date: 21 Mar 2022
  • With the development of optoelectronic countermeasures and ultrashort pulse laser technology, the study of the interaction between ultrashort pulse laser and monocrystalline silicon has a very important theoretical and practical significance. In order to further clarify the damage mechanism of 532 nm picosecond pulsed laser on monocrystalline silicon, we have conducted an experimental study to measure the damage threshold, clarify the damage mechanism, and discuss the pulse accumulation effect at low flux. Firstly, using a laser with a wavelength of 532 nm, a pulse width of 30 ps and a metallurgical microscope based on the 1-on-1 laser damage test method, the zero damage probability threshold is determined to be 0.52 J/cm2. Secondly, the damage effect of a picosecond laser irradiated on monocrystalline silicon was studied under different laser fluxes, and it was found that the damage of 532 nm picosecond laser to monocrystalline silicon is manifested as heated-effect damage and plasma impact damage. The increase in energy density can be divided into three stages according to the main damage mechanism: thermal effect (0.52~3 J/cm2), thermal ablation (3~50 J/cm2) and plasma effect (>50 J/cm2), and the damaged areas are corresponded to different growth laws with the laser energy density, respectively. Finally, an experiment for the multi-pulse cumulative effect was carried out at a low laser flux and it was found that at a laser energy density of 0.52 J/cm2, the surface was irradiated continuously for 16 shots. The formation of a heat-affected zone confirms that the cumulative effect of multiple pulses can lower the laser damage threshold on monocrystalline silicon.

     

  • loading
  • [1]
    XIE CH, MEYER R, FROEHLY L, et al. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging[J]. Light:Science &Applications, 2021, 10(1): 126.
    [2]
    JIANG L, WANG A D, LI B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light:Science &Applications, 2018, 7(2): 17134.
    [3]
    MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light:Science &Applications, 2016, 5(8): e16133.
    [4]
    LIU Y, LIU L SH, TANG W, et al. Experimental study on the damage of optical materials by out of band composite laser[J]. Applied Sciences, 2020, 10(10): 3578. doi: 10.3390/app10103578
    [5]
    FINGER J, BORNSCHLEGEL B, REININGHAUS M, et al. Heat input and accumulation for ultrashort pulse processing with high average power[J]. Advanced Optical Technologies, 2018, 7(3): 145-155. doi: 10.1515/aot-2018-0008
    [6]
    CHICHKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115. doi: 10.1007/BF01567637
    [7]
    MERKLE L D, BASS M, SWIMM R T. Erratum: multiple pulse laser-induced bulk damage in crystalline and fused quartz at 1.064 and 0.532 õm[J]. Optical Engineering, 1986, 25(1): 251196. doi: 10.1117/12.7973801
    [8]
    MEYER J R, KRUER M R, BARTOLI F J. Optical heating in semiconductors: laser damage in Ge, Si, InSb, and GaAs[J]. Journal of Applied Physics, 1980, 51(10): 5513-5522. doi: 10.1063/1.327469
    [9]
    RUBLACK T, HARTNAUER S, MERGNER M, et al. Mechanism of selective removal of transparent layers on semiconductors using ultrashort laser pulses[J]. Proceedings of SPIE, 2012, 8247: 82470Z. doi: 10.1117/12.905741
    [10]
    SMIRNOV N A, KUDRYASHOV S I, RUDENKO A A, et al. Pulsewidth and ambient medium effects during ultrashort-pulse laser ablation of silicon in air and water[J]. Applied Surface Science, 2021, 562: 150243. doi: 10.1016/j.apsusc.2021.150243
    [11]
    张明鑫, 李志明, 聂劲松, 等. 多脉冲飞秒激光烧蚀硅的热累积效应[J]. 光电子技术,2018,38(4):224-230.

    ZHANG M X, LI ZH M, NIE J S, et al. Heat accumulation effect of multipulse femtosecond laser ablation of silicon[J]. Optoelectronic Technology, 2018, 38(4): 224-230. (in Chinese)
    [12]
    WANG X, SHEN ZH H, LU J, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J]. Journal of Applied Physics, 2010, 108(3): 033103. doi: 10.1063/1.3466996
    [13]
    VAN WOERKOM T A, PERRAM G P, DOLASINSKI B D, et al. Picosecond laser ablation of metals and semiconductors with low-transverse order Gaussian beams[J]. Optical Engineering, 2020, 60(3): 031002.
    [14]
    SHAHEEN M E, GAGNON J E, FRYER B J. Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers[J]. Optics and Lasers in Engineering, 2019, 119: 18-25. doi: 10.1016/j.optlaseng.2019.02.003
    [15]
    THORSTENSEN J, FOSS S E. Investigation of depth of laser damage to silicon as function of wavelength and pulse duration[J]. Energy Procedia, 2013, 38: 794-800. doi: 10.1016/j.egypro.2013.07.348
    [16]
    郑长彬, 邵俊峰, 李雪雷, 等. 飞秒脉冲激光对硅基多层膜损伤特性[J]. 中国光学,2019,12(2):371-381. doi: 10.3788/co.20191202.0371

    ZHENG CH B, SHAO J F, LI X L, et al. Femtosecond pulsed laser induced damage characteristics on Si-based multi-layer film[J]. Chinese Optics, 2019, 12(2): 371-381. (in Chinese) doi: 10.3788/co.20191202.0371
    [17]
    邵俊峰, 郭劲, 王挺峰. 飞秒激光与硅的相互作用过程理论研究[J]. 红外与激光工程,2014,43(8):2419-2424. doi: 10.3969/j.issn.1007-2276.2014.08.005

    SHAO J F, GUO J, WANG T F. Theoretical research on dynamics of femto-second laser ablation crystal silicon[J]. Infrared and Laser Engineering, 2014, 43(8): 2419-2424. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.08.005
    [18]
    MCDONALD J P, MISTRY V R, RAY K E, et al. Femtosecond pulsed laser direct write production of nano- and microfluidic channels[J]. Applied Physics Letters, 2006, 88(18): 183113. doi: 10.1063/1.2201620
    [19]
    BENOCCI R, BATANI D, ROMAN H E. Incubation models for under-threshold laser ablation with thermal dissipation[J]. Applied Physics B, 2019, 125(2): 22. doi: 10.1007/s00340-019-7132-0
    [20]
    KÜPER S, STUKE M. UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR- and UV-spectroscopy[J]. Applied Physics A, 1989, 49(2): 211-215. doi: 10.1007/BF00616301
    [21]
    KÜPER S, STUKE M. Femtosecond UV excimer laser ablation[J]. Applied Physics B, 1987, 44(4): 199-204. doi: 10.1007/BF00692122
    [22]
    VAN DER LINDEN S, HAGMEIJER R, RÖMER G R B E. Picosecond pulsed underwater laser ablation of silicon and stainless steel: comparing crater analysis methods and analysing dependence of crater characteristics on water layer thickness[J]. Applied Surface Science, 2021, 540: 148005. doi: 10.1016/j.apsusc.2020.148005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(1377) PDF downloads(221) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return