Citation: | BI Yong, PAN Ming-qi, ZHANG Shuo, GAO Wei-nan. Overview of 3D point cloud super-resolution technology[J]. Chinese Optics, 2022, 15(2): 210-223. doi: 10.37188/CO.2021-0176 |
[1] |
李松泰. 三维激光扫描仪点云数据的应用研究[J]. 地矿测绘,2020,3(2):141-142.
LI S T. Application of point cloud in 3D laser scanner[J]. Geological and Mineral Surveying and Mapping, 2020, 3(2): 141-142. (in Chinese)
|
[2] |
杜瑞建, 葛宝臻, 陈雷. 多视高分辨率纹理图像与双目三维点云的映射方法[J]. 中国光学,2020,13(5):1055-1064. doi: 10.37188/CO.2020-0034
DU R J, GE B ZH, CHEN L. Texture mapping of multi-view high-resolution images and binocular 3D point clouds[J]. Chinese Optics, 2020, 13(5): 1055-1064. (in Chinese) doi: 10.37188/CO.2020-0034
|
[3] |
杜钦生, 李丹丹, 陈浩, 等. 结构光3D点云的PIN针针尖提取[J]. 液晶与显示,2021,36(9):1331-1340. doi: 10.37188/CJLCD.2020-0321
DU Q SH, LI D D, CHEN H, et al. PIN tip extraction from 3D point cloud of structured light[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1331-1340. (in Chinese) doi: 10.37188/CJLCD.2020-0321
|
[4] |
吴坤帅, 魏仲慧, 何昕, 等. 基于笔划三维深度特征的签名识别[J]. 液晶与显示,2019,34(10):1013-1020. doi: 10.3788/YJYXS20193410.1013
WU K SH, WEI ZH H, HE X, et al. Signatures recognition based on strokes 3D depth feature[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(10): 1013-1020. (in Chinese) doi: 10.3788/YJYXS20193410.1013
|
[5] |
谭红春, 耿英保, 杜炜. 一种高效的人脸三维点云超分辨率融合方法[J]. 光学技术,2016,42(6):501-505.
TAN H CH, GENG Y B, DU W. An efficient method of face super-resolution fusion using 3D cloud points[J]. Optical Technique, 2016, 42(6): 501-505. (in Chinese)
|
[6] |
张银, 任国全, 程子阳, 等. 三维激光雷达在无人车环境感知中的应用研究[J]. 激光与光电子学进展,2019,56(13):130001.
ZHANG Y, REN G Q, CHENG Z Y, et al. Application research of there-dimensional LiDAR in unmanned vehicle environment perception[J]. Laser &Optoelectronics Progress, 2019, 56(13): 130001. (in Chinese)
|
[7] |
王世峰, 戴祥, 徐宁, 等. 无人驾驶汽车环境感知技术综述[J]. 长春理工大学学报(自然科学版),2017,40(1):1-6.
WANG SH F, DAI X, XU N, et al. Overview on environment perception technology for unmanned ground vehicle[J]. Journal of Changchun University of Science and Technology (Natural Science Edition)
|
[8] |
杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报,2017,46(10):1509-1516. doi: 10.11947/j.AGCS.2017.20170351
YANG B SH, LIANG F X, HUANG R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. (in Chinese) doi: 10.11947/j.AGCS.2017.20170351
|
[9] |
张绍阳, 侯旭阳, 崔华, 等. 利用激光散斑获取深度图[J]. 中国光学,2016,9(6):633-641.
ZHANG SH Y, HOU X Y, CUI H, et al. Depth image acquisition using laser speckle[J]. Chinese Optics, 2016, 9(6): 633-641. (in Chinese)
|
[10] |
卜禹铭, 杜小平, 曾朝阳, 等. 无扫描激光三维成像雷达研究进展及趋势分析[J]. 中国光学,2018,11(5):711-727. doi: 10.3788/co.20181105.0711
BU Y M, DU X P, ZENG ZH Y, et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 2018, 11(5): 711-727. (in Chinese) doi: 10.3788/co.20181105.0711
|
[11] |
苏东, 张艳, 曲承志, 等. 基于彩色图像轮廓的深度图像修复方法[J]. 液晶与显示,2021,36(3):456-464. doi: 10.37188/CJLCD.2020-0222
SU D, ZHANG Y, QU CH ZH, et al. Depth image restoration method based on color image contour[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 456-464. (in Chinese) doi: 10.37188/CJLCD.2020-0222
|
[12] |
FOIX S, ALENYA G, TORRAS C. Lock-in Time-of-Flight (ToF) cameras: a survey[J]. IEEE Sensors Journal, 2011, 11(9): 1917-1926. doi: 10.1109/JSEN.2010.2101060
|
[13] |
SCHUON S, THEOBALT C, DAVIS J, et al. . High-quality scanning using time-of-flight depth superresolution[C]. Proceedings of 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, IEEE, 2008: 1-7.
|
[14] |
BALURE C S, KINI M R. Depth image super-resolution: a review and wavelet perspective[C]. Proceedings of International Conference on Computer Vision and Image Processing, Springer, 2017: 543-555.
|
[15] |
肖宿, 韩国强, 沃焱. 数字图像超分辨率重建技术综述[J]. 计算机科学,2009,36(12):8-13,54. doi: 10.3969/j.issn.1002-137X.2009.12.003
XIAO S, HAN G Q, WO Y. Survey of digital image super resolution reconstruction technology[J]. Computer Science, 2009, 36(12): 8-13,54. (in Chinese) doi: 10.3969/j.issn.1002-137X.2009.12.003
|
[16] |
HARRIS J L. Diffraction and resolving power[J]. Journal of the Optical Society of America, 1964, 54(7): 931-936. doi: 10.1364/JOSA.54.000931
|
[17] |
GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGraw-Hill, 1968.
|
[18] |
谢海平, 谢凯利, 杨海涛. 图像超分辨率方法研究进展[J]. 计算机工程与应用,2020,56(19):34-41.
XIE H P, XIE K L, YANG H T. Research progress of image super-resolution methods[J]. Computer Engineering and Applications, 2020, 56(19): 34-41. (in Chinese)
|
[19] |
VAN OUWERKERK J D. Image super-resolution survey[J]. Image and Vision Computing, 2006, 24(10): 1039-1052. doi: 10.1016/j.imavis.2006.02.026
|
[20] |
王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学,2017,10(4):438-448. doi: 10.3788/co.20171004.0438
WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms[J]. Chinese Optics, 2017, 10(4): 438-448. (in Chinese) doi: 10.3788/co.20171004.0438
|
[21] |
STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726. doi: 10.1364/JOSAA.6.001715
|
[22] |
GEVREKCI M, PAKIN K. Depth map super resolution[C]. Proceedings of the 18th IEEE International Conference on Image Processing, IEEE, 2011: 3449-3452.
|
[23] |
PATTI A J, ALTUNBASAK Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants[J]. IEEE Transactions on Image Processing, 2001, 10(1): 179-186. doi: 10.1109/83.892456
|
[24] |
TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]. Sixth International Conference on Computer Vision, IEEE, 1998: 839-846.
|
[25] |
KOPF J, COHEN M F, LISCHINSKI D, et al. Joint bilateral upsampling[J]. ACM Transactions on Graphics, 2007, 26(3): 96-es. doi: 10.1145/1276377.1276497
|
[26] |
涂义福, 张旭东, 张骏, 等. 基于边缘特征引导的深度图像超分率重建[J]. 计算机应用与软件,2017,34(2):220-225. doi: 10.3969/j.issn.1000-386x.2017.02.039
TU Y F, ZHANG X D, ZHANG J, et al. Depth map super-resolution reconstruction based on the edge feature-guided[J]. Computer Applications and Software, 2017, 34(2): 220-225. (in Chinese) doi: 10.3969/j.issn.1000-386x.2017.02.039
|
[27] |
YANG Q X, YANG R G, DAVIS J, et al.. Spatial-depth super resolution for range images[C]. Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
|
[28] |
CHAN D, BUISMAN H, THEOBALT C, et al.. A Noise-Aware Filter for Real-Time Depth Upsampling[C]. Multi-camera & Multi-modal Sensor Fusion Algorithms and Applications, Marseille, France: M2SFA2, 2008: inria-00326784.
|
[29] |
HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/TPAMI.2012.213
|
[30] |
FERSTL D, REINBACHER C, RANFTL R, et al. . Image guided depth upsampling using anisotropic total generalized variation[C]. 2013 IEEE International Conference on Computer Vision, IEEE, 2013: 993-1000.
|
[31] |
邸维巍, 张旭东, 胡良梅, 等. 彩色图约束的二阶广义总变分深度图超分辨率重建[J]. 中国图象图形学报,2014,19(8):1162-1167. doi: 10.11834/jig.20140807
DI W W, ZHANG X D, HU L M, et al. Depth image super-resolution based on second-order total generalized variation constrained by color image[J]. Journal of Image and Graphics, 2014, 19(8): 1162-1167. (in Chinese) doi: 10.11834/jig.20140807
|
[32] |
王宇, 朴燕, 孙荣春. 结合同场景彩色图像的深度图超分辨率重建[J]. 光学学报,2017,37(8):0810002. doi: 10.3788/AOS201737.0810002
WANG Y, PIAO Y, SUN R CH. Depth image super-resolution construction combined with high-resolution color image of the same scene[J]. Acta Optica Sinica, 2017, 37(8): 0810002. (in Chinese) doi: 10.3788/AOS201737.0810002
|
[33] |
DIEBEL J, THRUN S. An application of markov random fields to range sensing[C]. Proceedings of the 18th Conference on Neural Information Processing Systems, ACM, 2005: 291-298.
|
[34] |
陈金奇, 李榕. 一种基于改进MRF的深度图超分辨率重建[J]. 微处理机,2017,38(4):60-63,71. doi: 10.3969/j.issn.1002-2279.2017.04.015
CHEN J Q, LI R. A depth map super-resolution reconstruction based on improved markov random field[J]. Microprocessors, 2017, 38(4): 60-63,71. (in Chinese) doi: 10.3969/j.issn.1002-2279.2017.04.015
|
[35] |
PARK J, KIM H, TAI Y W, et al.. High quality depth map upsampling for 3D-TOF cameras[C]. 2011 International Conference on Computer Vision, IEEE, 2011: 1623-1630.
|
[36] |
SCHARSTEIN D, PAL C. Learning conditional random fields for stereo[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007: 1-8.
|
[37] |
DONG CH, LOY C C, HE K M, et al.. Learning a deep convolutional network for image super-resolution[C]. Proceedings of the 13th European Conference on Computer Vision, Springer, 2014: 184-199.
|
[38] |
DONG CH, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. doi: 10.1109/TPAMI.2015.2439281
|
[39] |
YU L Q, LI X ZH, FU C W, et al.. PU-Net: point cloud upsampling network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 2790-2799.
|
[40] |
CHARLES R Q, SU H, KAICHUN M, et al.. PointNet: deep learning on point Sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 77-85.
|
[41] |
QI C R, YI L, SU H, et al.. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, ACM, 2017: 5105-5114.
|
[42] |
WANG Y F, WU SH H, HUANG H, et al.. Patch-based progressive 3D point set upsampling[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 5951-5960.
|
[43] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. doi: 10.1145/3422622
|
[44] |
LI R H, LI X ZH, FU C W, et al.. PU-GAN: a point cloud upsampling adversarial network[C]. 2019 IEEE/CVF International Conference on Computer Vision, IEEE, 2019: 7202-7211.
|
[45] |
YANG Y Q, FENG CH, SHEN Y R, et al.. FoldingNet: point cloud auto-encoder via deep grid deformation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 206-215.
|
[46] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]. 5th International Conference on Learning Representations, OpenReview. net, 2017.
|
[47] |
QIAN G CH, ABUALSHOUR A, LI G H, et al.. PU-GCN: point cloud upsampling using graph convolutional networks[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2021: 11678-11687.
|
[48] |
WU H, ZHANG J, HUANG K. Point Cloud Super Resolution with Adversarial Residual Graph Networks[J]. arXiv preprint, 2019: arXiv: 1908.02111.
|
[49] |
YANG L B, WANG SH SH, MA S W, et al.. HiFaceGAN: face renovation via collaborative suppression and replenishment[C]. Proceedings of the 28th ACM International Conference on Multimedia, ACM, 2020: 1551-1560.
|
[50] |
SHAN T X, WANG J K, CHEN F F, et al. Simulation-based lidar super-resolution for ground vehicles[J]. Robotics and Autonomous Systems, 2020, 134: 103647. doi: 10.1016/j.robot.2020.103647
|