Volume 15 Issue 3
May  2022
Turn off MathJax
Article Contents
LI Mao-yue, LIU Ze-long, ZHAO Wei-xiang, XIAO Gui-feng. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. doi: 10.37188/CO.2021-0194
Citation: LI Mao-yue, LIU Ze-long, ZHAO Wei-xiang, XIAO Gui-feng. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. doi: 10.37188/CO.2021-0194

Blade reflection suppression technology based on surface structured light on-machine detection

Funds:  Supported by National Natural Science Foundation of China (No. 51975169) ;the Fundamental Research Fundation for Universities of Heilongjiang Province (No. 2019-KYYWF-0204)
More Information
  • Corresponding author: lmy0500@163.com
  • Received Date: 08 Nov 2021
  • Rev Recd Date: 07 Dec 2021
  • Accepted Date: 21 Jan 2022
  • Available Online: 26 Jan 2022
  • Publish Date: 20 May 2022
  • In the process of structured light detection, the thin-walled blade is easy to produce a strong reflection due to its low surface roughness, which affects the solution of the principal value of the fringe phase. As a result, it cannot accurately reconstruct the three-dimensional point cloud. In this paper, the blade in the machining process is taken as the research object, and an image enhancement process based on the Retinex algorithm is proposed to restore the information of the stripes in the position with the highest reflectivity. Firstly, the reflective characteristics of thin-walled blades are analyzed. The gray range and ideal gray value of the optimal exposure are calibrated experimentally. The camera response curve model of the aperture rotation angle and the image’s average gray level is determined, and the gray level interval of the optimal exposure is used as the detection condition by adjusting the aperture and exposure time. Secondly, the fringe image is processed based on the Retinex algorithm. The improved bilateral filter replaces the commonly used Gaussian filter, which effectively retains the edge information of the fringe while removing its illumination. Finally, monocular structured light detection is carried out on the thin-walled blade. The experimental results show that, for the fringe image processed by this proposed algorithm, the number of stripes detected by the Canny operator is the largest, the average growth rate of image information entropy is 18.21%, and the phase principal value error of the solution is the smallest. Through the deviation analysis with the standard point cloud detected by the handheld laser scanner, the positive and negative deviations of the point cloud are reduced to 0.0589 mm and −0.0590 mm, which are reduced by 44.6% and 44.1% compared with the deviation of the origin cloud, respectively, and the surface quality is significantly improved. The image enhancement algorithm proposed effectively suppresses the reflection of the metal surface in the process of surface structured light detection.

     

  • loading
  • [1]
    李茂月, 马康盛, 许勇浩, 等. 基于单目结构光的形貌测量误差补偿方法研究[J]. 仪器仪表学报,2020,41(5):19-31.

    LI M Y, MA K SH, XU Y H, et al. Research on morphology measurement error compensation method based on the monocular structure light[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 19-31. (in Chinese)
    [2]
    马国庆, 刘丽, 于正林, 等. 大型复杂曲面三维形貌测量及应用研究进展[J]. 中国光学,2019,12(2):214-228. doi: 10.3788/co.20191202.0214

    MA G Q, LIU L, YU ZH L, et al. Application and development of three-dimensional profile measurement for large and complex surface[J]. Chinese Optics, 2019, 12(2): 214-228. (in Chinese) doi: 10.3788/co.20191202.0214
    [3]
    张申华, 杨延西, 秦峤孟. 针对光栅图像的快速盲去噪方法[J]. 中国光学,2021,14(3):596-604. doi: 10.37188/CO.2020-0166

    ZHANG SH H, YANG Y X, QIN Q M. A fast blind denoising method for grating image[J]. Chinese Optics, 2021, 14(3): 596-604. (in Chinese) doi: 10.37188/CO.2020-0166
    [4]
    PALOUSEK D, OMASTA M, KOUTNY D, et al. Effect of matte coating on 3D optical measurement accuracy[J]. Optical Materials, 2015, 40: 1-9. doi: 10.1016/j.optmat.2014.11.020
    [5]
    ZHANG S, YAU S T. High dynamic range scanning technique[J]. Optical Engineering, 2009, 48(3): 033604. doi: 10.1117/1.3099720
    [6]
    SONG ZH, JIANG H L, LIN H B, et al. A high dynamic range structured light means for the 3D measurement of specular surface[J]. Optics and Lasers in Engineering, 2017, 95: 8-16. doi: 10.1016/j.optlaseng.2017.03.008
    [7]
    李兆杰, 崔海华, 刘长毅, 等. 一种基于自动多次曝光面结构光的形貌测量方法[J]. 光学学报,2018,38(11):1112004. doi: 10.3788/AOS201838.1112004

    LI ZH J, CUI H H, LIU CH Y, et al. A shape measurement method based on automatic multiple exposure surface structured light[J]. Acta Optica Sinica, 2018, 38(11): 1112004. (in Chinese) doi: 10.3788/AOS201838.1112004
    [8]
    WADDINGTON C J, KOFMAN J D. Modified sinusoidal fringe-pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology[J]. Optical Engineering, 2014, 53(8): 084109. doi: 10.1117/1.OE.53.8.084109
    [9]
    LIN H, GAO J, MEI Q, et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement[J]. Optics Express, 2016, 24(7): 7703-7718. doi: 10.1364/OE.24.007703
    [10]
    RAO L, DA F P. High dynamic range 3D shape determination based on automatic exposure selection[J]. Journal of Visual Communication and Image Representation, 2018, 50: 217-226. doi: 10.1016/j.jvcir.2017.12.003
    [11]
    RIVIERE J, RESHETOUSKI I, FILIPI L, et al. Polarization imaging reflectometry in the wild[J]. ACM Transactions on Graphics, 2017, 36(6): 206.
    [12]
    SALAHIEH B, CHEN ZH Y, RODRIGUEZ J J, et al. Multi-polarization fringe projection imaging for high dynamic range objects[J]. Optics Express, 2014, 22(8): 10064-10071. doi: 10.1364/OE.22.010064
    [13]
    郝婧蕾, 赵永强, 赵海盟, 等. 偏振多光谱机器视觉的高反光无纹理目标三维重构方法[J]. 测绘学报,2018,47(6):816-824.

    HAO J L, ZHAO Y Q, ZHAO H M, et al. 3D reconstruction of high-reflective and textureless targets based on multispectral polarization and machine vision[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 816-824. (in Chinese)
    [14]
    王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学,2017,10(4):438-448. doi: 10.3788/co.20171004.0438

    WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms[J]. Chinese Optics, 2017, 10(4): 438-448. (in Chinese) doi: 10.3788/co.20171004.0438
    [15]
    王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese) doi: 10.37188/CO.2020-0199
    [16]
    COOK R L, TORRANCE K E. A reflectance model for computer graphics[J]. ACM Transactions on Graphics, 1982, 1(1): 7-24. doi: 10.1145/357290.357293
    [17]
    张颖, 李金龙, 黄趾维, 等. 基于BRDF模型的金属表面反射特性及相变特性研究[J]. 光电技术应用,2017,32(3):32-35.

    ZHANG Y, LI J L, HUANG ZH W, et al. Research on reflection and phase shift characters of metal surface based on BRDF model[J]. Electro-optic Technology Application, 2017, 32(3): 32-35. (in Chinese)
    [18]
    王金海, 李华, 魏力. 基于C-T模型的光学元件加工表面的光学特性研究[J]. 光学技术,2021,47(2):172-177.

    WANG J H, LI H, WEI L. Study on optical properties of machining surface of optical element based on C-T model[J]. Optical Technique, 2021, 47(2): 172-177. (in Chinese)
    [19]
    LAND E H, MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. doi: 10.1364/JOSA.61.000001
    [20]
    毛向向, 王红军. 薄壁零件复杂光照情况下的轮廓特征识别[J]. 电子测量与仪器学报,2021,35(3):137-143.

    MAO X X, WANG H J. Improved retinex and edge detection fusion of thin-walled complex part contour recognition algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(3): 137-143. (in Chinese)
    [21]
    冯维, 吴贵铭, 赵大兴, 等. 多图像融合Retinex用于弱光图像增强[J]. 光学 精密工程,2020,28(3):736-744. doi: 10.3788/OPE.20202803.0736

    FENG W, WU G M, ZHAO D X, et al. Multi images fusion Retinex for low light image enhancement[J]. Optics and Precision Engineering, 2020, 28(3): 736-744. (in Chinese) doi: 10.3788/OPE.20202803.0736
    [22]
    石磊, 奚茂龙, 孙俊. 基于可控核双边滤波Retinex水下图像增强算法[J]. 量子电子学报,2018,35(1):7-12.

    SHI L, XI M L, SUN J. Underswater image enhancement algorithm based on controllable nuclear bilateral filtering Retinex[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 7-12. (in Chinese)
    [23]
    王冬云, 唐楚, 鄂世举, 等. 基于导向滤波Retinex和自适应Canny的图像边缘检测[J]. 光学 精密工程,2021,29(2):443-451. doi: 10.37188/OPE.20212902.0443

    WANG D Y, TANG CH, E SH J, et al. Image edge detection based on guided filter Retinex and adaptive Canny[J]. Optics and Precision Engineering, 2021, 29(2): 443-451. (in Chinese) doi: 10.37188/OPE.20212902.0443
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(1148) PDF downloads(202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return