Volume 15 Issue 3
May  2022
Turn off MathJax
Article Contents
KOU Peng, ZHI Shuai-feng, CHENG Yun, LIU Yong-xiang. Detection of elliptical components in adaptive optical image of space target[J]. Chinese Optics, 2022, 15(3): 454-463. doi: 10.37188/CO.2021-0208
Citation: KOU Peng, ZHI Shuai-feng, CHENG Yun, LIU Yong-xiang. Detection of elliptical components in adaptive optical image of space target[J]. Chinese Optics, 2022, 15(3): 454-463. doi: 10.37188/CO.2021-0208

Detection of elliptical components in adaptive optical image of space target

Funds:  Supported by National Natural Science Foundation of China (No. 61921001, No. 61801484)
More Information
  • Corresponding author: lyx_bible@sina.com
  • Received Date: 03 Dec 2021
  • Rev Recd Date: 04 Jan 2022
  • Accepted Date: 01 Mar 2022
  • Available Online: 01 Mar 2022
  • Publish Date: 20 May 2022
  • In order to identify the elliptical components of space target, an ellipse detection method based on adaptive optical image is proposed. Firstly, the RL(Richardson-Lucy) method is used to restore the adaptive optics image. Next, the Arc-Support Line Segments (ASLS) method is used to detect the ellipse of the restored image. To tackle the problems of “arc segment over segmentation” and “semantic information difference” caused by Canny edge extraction, an improved edge extraction algorithm based on Multiscale Combinatorial Grouping (MCG) is proposed. Finally, for some false ellipses produced by using verification methods such as goodness measurement, a variety of geometric constraint measurement are comprehensively used to effectively eliminate the false ellipse. The experimental results show that the detection error of ellipse center point, the semi-major axis error and the direction angle error are less than 3 pixels, 4 pixels and 3 degrees, respectively. When the overlap area threshold is 0.65, the accuracy rate of this algorithm is 85.7%, the recall rate is 93.3% and the F value is 0.893. Our method is better than the traditional ellipse detection algorithms.

     

  • loading
  • [1]
    孙志伟, 刘伟奇, 吕博, 等. 大景深空间目标成像光学系统设计[J]. 液晶与显示,2021,36(11):1597-1604. doi: 10.37188/CJLCD.2021-0183

    SUN ZH W, LIU W Q, LYU B, et al. Design of imaging optical system for space target with large depth of field[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1597-1604. (in Chinese) doi: 10.37188/CJLCD.2021-0183
    [2]
    李正炜, 王建立, 吴元昊, 等. 基于单站地基望远镜的空间目标姿态估计方法[J]. 中国光学,2016,9(3):371-378. doi: 10.3788/CO.20160903.0371

    LI ZH W, WANG J L, WU Y H, et al. Method of attitude estimation for space object based on single ground-based telescope[J]. Chinese Optics, 2016, 9(3): 371-378. (in Chinese) doi: 10.3788/CO.20160903.0371
    [3]
    张磊, 吴金灵, 刘仁虎, 等. 光学自由曲面自适应干涉检测研究新进展[J]. 中国光学,2021,14(2):227-244. doi: 10.37188/CO.2020-0126

    ZHANG L, WU J L, LIU R H, et al. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. (in Chinese) doi: 10.37188/CO.2020-0126
    [4]
    LU W, TAN J L. Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT)[J]. Pattern Recognition, 2008, 41(4): 1268-1279. doi: 10.1016/j.patcog.2007.09.006
    [5]
    李娜, 王军, 董兴法, 等. 基于改进Hough变换的指针式仪表识别方法[J]. 液晶与显示,2021,36(8):1196-1203. doi: 10.37188/CJLCD.2020-0179

    LI N, WANG J, DONG X F, et al. Pointer meter recognition method based on improved Hough transform[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1196-1203. (in Chinese) doi: 10.37188/CJLCD.2020-0179
    [6]
    ARELLANO C, DAHYOT R. Robust ellipse detection with Gaussian mixture models[J]. Pattern Recognition, 2016, 58: 12-26. doi: 10.1016/j.patcog.2016.01.017
    [7]
    吴海滨, 魏喜盈, 刘美红, 等. 结合空洞卷积和迁移学习改进YOLOv4的X光安检危险品检测[J]. 中国光学,2021,14(6):1417-1425. doi: 10.37188/CO.2021-0078

    WU H B, WEI X Y, LIU M H, et al. Improved YOLOv4 for dangerous goods detection in X-ray inspection combined with atrous convolution and transfer learning[J]. Chinese Optics, 2021, 14(6): 1417-1425. (in Chinese) doi: 10.37188/CO.2021-0078
    [8]
    YANG T, SRIHARI S N. Ellipse detection using sampling constraints[C]. Proceedings of the 2011 18th IEEE International Conference on Image Processing, IEEE, 2011: 1045-1048.
    [9]
    PĂTRĂUCEAN V, GURDJOS P, VON GIOI R G. Joint a Contrario ellipse and line detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 788-802. doi: 10.1109/TPAMI.2016.2558150
    [10]
    CHEN S L, XIA R B, ZHAO J B, et al. A hybrid method for ellipse detection in industrial images[J]. Pattern Recognition, 2017, 68: 82-98. doi: 10.1016/j.patcog.2017.03.007
    [11]
    MENG C, LI ZH X, BAI X ZH, et al. Arc adjacency matrix-based fast ellipse detection[J]. IEEE Transactions on Image Processing, 2020, 29: 4406-4420. doi: 10.1109/TIP.2020.2967601
    [12]
    LU CH SH, XIA S Y, SHAO M, et al. Arc-support line segments revisited: an efficient high-quality ellipse detection[J]. IEEE Transactions on Image Processing, 2020, 29: 768-781. doi: 10.1109/TIP.2019.2934352
    [13]
    张帆, 韩树奎, 张立国, 等. Canny算法的GPU并行加速[J]. 中国光学,2017,10(6):737-743. doi: 10.3788/co.20171006.0737

    ZHANG F, HAN SH K, ZHANG L G, et al. Parallel acceleration of Canny algorithm based on GPU[J]. Chinese Optics, 2017, 10(6): 737-743. (in Chinese) doi: 10.3788/co.20171006.0737
    [14]
    PONT-TUSET J, ARBELÁEZ P, BARRON J T, et al. Multiscale combinatorial grouping for image segmentation and object proposal generation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1): 128-140. doi: 10.1109/TPAMI.2016.2537320
    [15]
    刘聪, 董文飞, 蒋克明, 等. 基于改进分水岭分割算法的致密荧光微滴识别[J]. 中国光学,2019,12(4):783-790. doi: 10.3788/co.20191204.0783

    LIU C, DONG W F, JIANG K M, et al. Recognition of dense fluorescent droplets using an improved watershed segmentation algorithm[J]. Chinese Optics, 2019, 12(4): 783-790. (in Chinese) doi: 10.3788/co.20191204.0783
    [16]
    EVERINGHAM M, MULLER H, THOMAS B. Evaluating image segmentation algorithms using the Pareto front[C]. Proceedings of the 7th European Conference on Computer Vision, Springer, 2002: 34-48.
    [17]
    https://img2.baidu.com/it/u=1967449378,3214789687&fm=26&fmt=auto [OL].
    [18]
    赵云峰. 结合自适应核函数的Mean-shift改进算法[J]. 液晶与显示,2016,31(12):1143-1148. doi: 10.3788/YJYXS20163112.1143

    ZHAO Y F. Improved mean-shift algorithm combined with adaptive kernel function[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(12): 1143-1148. (in Chinese) doi: 10.3788/YJYXS20163112.1143
    [19]
    PRASAD D K, LEUNG M K H, QUEK C, et al. DEB: definite error bounded tangent estimator for digital curves[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4297-4310. doi: 10.1109/TIP.2014.2346018
    [20]
    FISH D A, BRINICOMBE A M, PIKE E R, et al. Blind deconvolution by means of the Richardson-Lucy algorithm[J]. Journal of the Optical Society of America A, 1995, 12(1): 58-65. doi: 10.3969/j.issn.2095-1531.2011.05.017
    [21]
    http://www.astrospider.com/images/Lacrosse/051113_19stack.jpg [OL].
    [22]
    MATSON C L, BORELLI K, JEFFERIES S, et al. Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects[J]. Applied Optics, 2009, 48(1): A75-A92. doi: 10.1364/AO.48.000A75
    [23]
    https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fwww.lunwenstudy.com%2Fuploads%2Fallimg%2F161014%2F14-161014104I5E7.png&refer=http%3A%2F%2Fwww.lunwenstudy.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1652597051&t=c00e3ce939c8727f9f68d32e171e6747 [OL].
    [24]
    PĂTRĂUCEAN V, GURDJOS P, VON GIOI P G. A parameterless line segment and elliptical arc detector with enhanced ellipse fitting[C]. Proceedings of the 12th European Conference on Computer Vision, Springer, 2012: 572-585.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(1615) PDF downloads(195) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return