Volume 15 Issue 3
May  2022
Turn off MathJax
Article Contents
ZHA Zheng-tao, ZHANG Qian-shu. Electrically controlled polarization rotator based on liquid crystal optical waveguide[J]. Chinese Optics, 2022, 15(3): 552-561. doi: 10.37188/CO.2021-0213
Citation: ZHA Zheng-tao, ZHANG Qian-shu. Electrically controlled polarization rotator based on liquid crystal optical waveguide[J]. Chinese Optics, 2022, 15(3): 552-561. doi: 10.37188/CO.2021-0213

Electrically controlled polarization rotator based on liquid crystal optical waveguide

Funds:  Supported by the Scientific Research Foundation of the Science and Technology Department of Sichuan Province, China (No. 2014JY0024); the Scientific Research Foundation of the Science and Technology Bureau of Nanchong, China (No. 19YFZJ0090); the Talent Scientific Research Foundation of China West Normal University Foundation, China (No. 17YC056)
More Information
  • Corresponding author: jackyzhang@cwnu.edu.cn
  • Received Date: 06 Dec 2021
  • Rev Recd Date: 22 Dec 2021
  • Accepted Date: 21 Jan 2022
  • Available Online: 27 Jan 2022
  • Publish Date: 20 May 2022
  • In this study, the gradient characteristic of field-induced reorientation of nematic liquid crystal was investigated to accurately analyze the Polarization Conversion Length (PCL) and Polarization Conversion Efficiency (PCE) of an electronically controlled polarization rotator based on a liquid crystal optical waveguide. Firstly, according to the eigenvalue equation obtained from the liquid crystal magnetic field coupling equations, the corresponding relationship between PCL and the applied voltage was constructed. Then, the explicit expression of the iterative equations of the Alternating Direction Implicit Beam Propagation Method (ADI-BPM) was obtained by transverse finite-difference discretization of the electric field transmission equation, which was used to solve the propagation field in the liquid crystal optical waveguide and calculate the PCE. Finally, the eigenmode and propagation field were solved through a simulation experiment, and then the effects of the gradient characteristics of the liquid crystal director on PCL and PCE were analyzed. The results show that the effect of the gradient of the liquid crystal director on the PCL can be ignored, but the maximum PCE is about 20% lower than that of the uniform reorientation of the liquid crystal. This result will provide a certain theoretical reference for the practical development of an electronically controlled polarization rotator based on a liquid crystal optical waveguide.

     

  • loading
  • [1]
    WANG ZH CH, DAI D X. Ultrasmall Si-nanowire-based polarization rotator[J]. Journal of the Optical Society of America B, 2008, 25(5): 747-753. doi: 10.1364/JOSAB.25.000747
    [2]
    戴道锌, 王健, 陈思涛. 硅基片上复用—解复用技术与器件[J]. 电信科学,2015,31(10):9-21.

    DAI D X, WANG J, CHEN S T. Silicon-based-chip multiplexing technologies and devices[J]. Telecommunications Science, 2015, 31(10): 9-21. (in Chinese)
    [3]
    ONO T, YANO Y. Key technologies for terabit/second WDM systems with high spectral efficiency of over 1 bit/s/Hz[J]. IEEE Journal of Quantum Electronics, 1998, 34(11): 2080-2088. doi: 10.1109/3.726596
    [4]
    INOUE Y, TAKAHASHI H, ANDO S, et al. Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate[J]. Journal of Lightwave Technology, 1997, 15(10): 1947-1957. doi: 10.1109/50.633599
    [5]
    LI T H, CHEN Q M, YU W X, et al. Planar polarization-routing optical cross-connects using nematic liquid crystal waveguides[J]. Optics Express, 2018, 26(1): 402-418. doi: 10.1364/OE.26.000402
    [6]
    SHANI Y, ALFERNESS R, KOCH T, et al. Polarization rotation in asymmetric periodic loaded rib waveguides[J]. Applied Physics Letters, 1991, 59(11): 1278-1280. doi: 10.1063/1.105474
    [7]
    VAN DER TOL J J G M, HAKIMZADEH F, PEDERSEN J W, et al. A new short and low-loss passive polarization converter on InP[J]. IEEE Photonics Technology Letters, 1995, 7(1): 32-34. doi: 10.1109/68.363385
    [8]
    OBAYYA S S A, RAHMAN B M A, GRATTAN K T V, et al. Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides[J]. IEEE Photonics Technology Letters, 2001, 13(7): 681-683. doi: 10.1109/68.930413
    [9]
    OBAYYA S S A, RAHMAN B M A, GRATTAN K T V, et al. Improved design of a polarization converter based on semiconductor optical waveguide bends[J]. Applied Optics, 2001, 40(30): 5395-5401. doi: 10.1364/AO.40.005395
    [10]
    CHEN L, ZHANG W G, ZHOU Q, et al. Polarization rotator based on hybrid plasmonic photonic crystal fiber[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2291-2294. doi: 10.1109/LPT.2014.2352356
    [11]
    BEGGS D M, MIDRIO M, KRAUSS T F. Compact polarization rotators for integrated polarization diversity in InP-based waveguides[J]. Optics Letters, 2007, 32(15): 2176-2178. doi: 10.1364/OL.32.002176
    [12]
    HAMEED M F O, HUSSAIN F F K, OBAYYA S S A. Ultracompact polarization rotator based on liquid crystal channel on silicon[J]. Journal of Lightwave Technology, 2017, 35(11): 2190-2199. doi: 10.1364/OE.26.032317
    [13]
    DAVIS S R, ROMMEL S D, FARCA G, et al. . A new electro-optic waveguide architecture and the unprecedented devices it enables[C]. SPIE Defense and Security Symposium. Orlando, United States: International Society for Optics and Photonics, 2008: 697503.
    [14]
    TRIPATHI U S, RASTOGI V. Liquid crystal based rib waveguide[J]. Journal of Lightwave Technology, 2020, 38(15): 4045-4051.
    [15]
    杨登科, 吴诗聪. 液晶器件基础[M]. 郭太良, 周雄图, 译. 2版. 北京: 科学出版社, 2016.

    YANG D K, WU S T. Fundamentals of Liquid Crystal Devices[M]. GUO T L, ZHOU X T, trans. 2nd ed. Beijing: Science Press, 2016. (in Chinese)
    [16]
    KHOO I C. Liquid Crystals[M]. 2nd ed. Hoboken: Wiley-Interscience, 2007.
    [17]
    AGRAWAL O P. Formulation of Euler-Lagrange equations for fractional variational problems[J]. Journal of Mathematical Analysis and Applications, 2002, 272(1): 368-379.
    [18]
    查正桃,张谦述. 液晶光波导中本征模内场分量间的关系[J]. 液晶与显示,2022,37(1):14-20.

    ZHA ZH T, ZHANG Q SH. Relationship of field components in the liquid crystal optical waveguide eigenmode[J]. Chinese Journal of Liquid Crystal and Displays, 2022, 37(1): 14-20. (in Chinese)
    [19]
    FALLAHKHAIR A B, LI K S, MURPHY T E. Vector finite difference modesolver for anisotropic dielectric waveguides[J]. Journal of Lightwave Technology, 2008, 26(11): 1423-1431. doi: 10.1109/JLT.2008.923643
    [20]
    KAWANO K, KITOH T. Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation[M]. New York: John Wiley & Sons, Inc, 2001.
    [21]
    YAMAMOTO S, KOYAMADA Y, MAKIMOTO T. Normal‐mode analysis of anisotropic and gyrotropic thin‐film waveguides for integrated optics[J]. Journal of Applied Physics, 1972, 43(12): 5090-5097. doi: 10.1063/1.1661077
    [22]
    YAMAUCHI J, TAKAHASHI G, NAKANO H. Full-vectorial beam-propagation method based on the McKee-Mitchell scheme with improved finite-difference formulas[J]. Journal of Lightwave Technology, 1998, 16(12): 2458-2464. doi: 10.1109/50.736638
    [23]
    ALCANTARA L D S, TEIXEIRA F L, CÉSAR A C, et al. A new full-vectorial FD-BPM scheme: application to the analysis of magnetooptic and nonlinear saturable media[J]. Journal of Lightwave Technology, 2005, 23(8): 2579-2585. doi: 10.1109/JLT.2005.850811
    [24]
    HADLEY G R. Transparent boundary condition for beam propagation[J]. Optics Letters, 1991, 16(9): 624-626. doi: 10.1364/OL.16.000624
    [25]
    HOLMES B M, HUTCHINGS D C. Realization of novel low-loss monolithically integrated passive waveguide mode converters[J]. IEEE Photonics Technology Letters, 2006, 18(1): 43-45. doi: 10.1109/LPT.2005.859987
    [26]
    BULJA S, MIRSHEKAR-SYAHKAL D, JAMES R, et al. Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(12): 3493-3501.
    [27]
    LI J, WU S T, BRUGIONI S, et al. Infrared refractive indices of liquid crystals[J]. Journal of Applied Physics, 2005, 97(7): 073501. doi: 10.1063/1.1877815
    [28]
    查正桃,张谦述,张耀进,周琪.液晶平板光波导中耦合模式的研究[J/OL].西华师范大学学报(自然科学版): 1-7. [2021-12-04]. http://kns.cnki.net/kcms/detail/51.1699.N.20211130.1830.008.html.

    ZHA ZH T, ZHANG Q SH, ZHANG Y J, et al. Coupling modes in liquid crystal slab optical waveguide[J/OL]. Journal of China West Normal University (Natural Sciences): 1-7. [2021-12-04]. http://kns.cnki.net/kcms/detail/51.1699.N.20211130.1830.008.html.
    [29]
    杨文晨, 秦增光, 刘兆军, 等. 基于希尔伯特-黄变换的双马赫-曾德分布式光纤传感振动定位方法[J]. 中国光学,2021,14(6):1410-1416. doi: 10.37188/CO.2021-0065

    YANG W CH, QIN Z G, LIU ZH J, et al. A Hilbert-Huang transform method for vibration localization based on a dual Mach-Zehnder distributed optical fiber sensor[J]. Chinese Optics, 2021, 14(6): 1410-1416. (in Chinese) doi: 10.37188/CO.2021-0065
    [30]
    刘野, 刘宇, 肖辉东, 等. 638nm光栅外腔窄线宽半导体激光器[J]. 中国光学,2020,13(6):1249-1256. doi: 10.37188/CO.2020-0249

    LIU Y, LIU Y, XIAO H D, et al. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. (in Chinese) doi: 10.37188/CO.2020-0249
    [31]
    DENG H H, YEVICK D O, BROOKS C, et al. Design rules for slanted-angle polarization rotators[J]. Journal of Lightwave Technology, 2005, 23(1): 432-445. doi: 10.1109/JLT.2004.834477
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(1541) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return