Citation: | PAN Yong-gang, LIN Zhao-wen, WANG Ben, FU Xiu-hua. Film thickness uniformity of deep ultraviolet large aperture aspheric mirror[J]. Chinese Optics, 2022, 15(4): 740-746. doi: 10.37188/CO.2022-0005 |
As an important parameter of high-precision optical films, thickness uniformity plays a vital role in their performance. Large-size high-precision reflective films have especially high requirements for thickness uniformity. In this paper, the efficiency and accuracy of the uniformity correction of thin films are greatly improved by studying the emission characteristics and film thickness distribution of the evaporation source, combining Mathcad software to establish precise mathematical and physical models, writing automatic programs, and simulating the correcting mask shape. Through this method, an aspherical deep ultraviolet reflector with a diameter of 320 mm is prepared on public autobiographical planetary evaporation deposition equipment. The average reflectance at 240−300 nm ultraviolet waveband is greater than 97.5%, and the uniformity is better than 0.5%. This research provides a theoretical basis and technical support for the uniformity correction of large aperture aspheric films.
[1] |
彭祎帆, 袁波, 曹向群. 光刻机技术现状及发展趋势[J]. 光学仪器,2010,32(4):80-85.
PENG Y F, YUAN B, CAO X Q. Technical status and developing trend of lithographic tools[J]. Optical Instruments, 2010, 32(4): 80-85. (in Chinese)
|
[2] |
程伟林, 张方, 林栋梁, 等. 光刻机照明光场均匀性高精度校正方法研究[J]. 光学学报,2018,38(7):0722001. doi: 10.3788/AOS201838.0722001
CHENG W L, ZHANG F, LIN D L, et al. High precision correction method of illumination field uniformity for photolithography illumination system[J]. Acta Optica Sinica, 2018, 38(7): 0722001. (in Chinese) doi: 10.3788/AOS201838.0722001
|
[3] |
秦朗. 半导体芯片制造过程中的关键——光刻技术[J]. 数码设计,2019,8(7):99.
QIN L. The key to the manufacturing process of semiconductor chips—lithography[J]. Peak Data Science, 2019, 8(7): 99. (in Chinese)
|
[4] |
王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学,2020,13(3):427-441.
WANG X Y, LIU L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. (in Chinese)
|
[5] |
宗楠, 胡蔚敏, 王志敏, 等. 激光等离子体13.5nm极紫外光刻光源进展[J]. 中国光学,2020,13(1):28-42. doi: 10.3788/co.20201301.0028
ZONG N, HU W M, WANG ZH M, et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 2020, 13(1): 28-42. (in Chinese) doi: 10.3788/co.20201301.0028
|
[6] |
殷长帅, 周剑, 刘翊, 等. 声表面波紫外光探测器的研究进展[J]. 光学 精密工程,2020,28(7):1433-1445. doi: 10.37188/OPE.20202807.1433
YIN CH SH, ZHOU J, LIU Y, et al. Research progress of surface acoustic wave ultraviolet detectors[J]. Optics and Precision Engineering, 2020, 28(7): 1433-1445. (in Chinese) doi: 10.37188/OPE.20202807.1433
|
[7] |
张德福, 李显凌, 芮大为, 等. 193nm投影光刻物镜光机系统关键技术研究进展[J]. 中国科学:技术科学,2017,47(6):565-581. doi: 10.1360/N092017-00008
ZHANG D F, LI X L, RUI D W, et al. Key technology progress of optomechanical systems in 193 nm projection objective[J]. SCIENTIA SINICA Technologica, 2017, 47(6): 565-581. (in Chinese) doi: 10.1360/N092017-00008
|
[8] |
甘雨, 张方, 朱思羽, 等. 光刻机照明系统光瞳特性参数的评估算法[J]. 中国激光,2019,46(3):0304007. doi: 10.3788/CJL201946.0304007
GAN Y, ZHANG F, ZHU S Y, et al. Evaluation algorithm of pupil characteristic parameters in lithography illumination system[J]. Chinese Journal of Lasers, 2019, 46(3): 0304007. (in Chinese) doi: 10.3788/CJL201946.0304007
|
[9] |
王思雨, 周贤建, 李青原, 等. 截止斜率可控的蓝光防护光学薄膜[J]. 中国光学,2021,14(3):544-551. doi: 10.37188/CO.2020-0212
WANG S Y, ZHOU X J, LI Q Y, et al. Blue-blocking optical thin films with controllable cutoff slope[J]. Chinese Optics, 2021, 14(3): 544-551. (in Chinese) doi: 10.37188/CO.2020-0212
|
[10] |
VILLA F, POMPA O. Emission pattern of real vapor sources in high vacuum: an overview[J]. Applied Optics, 1999, 38(4): 695-703. doi: 10.1364/AO.38.000695
|
[11] |
董磊, 赵元安, 易葵, 等. 不同类型蒸发源对平面夹具薄膜均匀性的影响[J]. 强激光与粒子束,2005,17(10):1518-1522.
DONG L, ZHAO Y A, YI K, et al. Influence of different kinds of evaporation sources on films uniformity[J]. High Power Laser and Particle Beams, 2005, 17(10): 1518-1522. (in Chinese)
|
[12] |
姚玉明, 宋宝安, 肖传富, 等. 透明红外硫系薄膜非均匀性检测及影响因素[J]. 光学 精密工程,2020,28(5):1005-1011.
YAO Y M, SONG B A, XIAO CH F, et al. Optical non-uniformity test of transparent infrared chalcogenide film and influencing factors[J]. Optics and Precision Engineering, 2020, 28(5): 1005-1011. (in Chinese)
|
[13] |
付秀华, 陈成, 胡章贵, 等. 278 nm全固态激光系统倍频分离膜的研制[J]. 中国激光,2019,46(12):1203002. doi: 10.3788/CJL201946.1203002
FU X H, CHEN CH, HU ZH G, et al. Development of separation film for frequency doubling in 278 nm all-solid-state laser system[J]. Chinese Journal of Lasers, 2019, 46(12): 1203002. (in Chinese) doi: 10.3788/CJL201946.1203002
|
[14] |
李大伟, 陶春先, 李笑, 等. 1064 nm与532 nm激光对电子束蒸发制备的HfO2/SiO2高反膜损伤比较[J]. 强激光与粒子束,2008,20(9):1457-1460.
LI D W, TAO CH X, LI X, et al. Comparison of laser induced damage at 1064 nm and 532 nm to high-reflective film fabricated by electron beam evaporation[J]. High Power Laser and Particle Beams, 2008, 20(9): 1457-1460. (in Chinese)
|
[15] |
VILLA F, MARTÍNEZ A, REGALADO L E. Correction masks for thickness uniformity in large-area thin films[J]. Applied Optics, 2000, 39(10): 1602-1610. doi: 10.1364/AO.39.001602
|
[16] |
ZHANG Y CH, SONG Q ZH, SUN ZH L. Research on thin film thickness uniformity for deposition of rectangular planar sputtering target[J]. Physics Procedia, 2012, 32: 903-913. doi: 10.1016/j.phpro.2012.03.655
|
[17] |
HOLLAND L. Vacuum Deposition of Thin Films[M]. London: Chapman and Hall, 1970: 1600-1631.
|