Volume 16 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
YANG Shu-han, QIAO Shun-da, LIN Dian-yang, MA Yu-fei. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029
Citation: YANG Shu-han, QIAO Shun-da, LIN Dian-yang, MA Yu-fei. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029

Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy

Funds:  Supported by the National Outstanding Youth Science Fund of China (No. 62022032), National Natural Science Foundation of China (No. 61875047 and No. 61505041), Natural Science Foundation of Heilongjiang Province of China (No. YQ2019F006), Financial Grant from the Heilongjiang Province Postdoctoral Foundation (No. LBH-Q18052), Fundamental Research Funds for the Central Universities
More Information
  • Corresponding author: mayufei@hit.edu.cn
  • Received Date: 01 Mar 2022
  • Rev Recd Date: 22 Mar 2022
  • Available Online: 16 Jun 2022
  • Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a recently developed laser spectral gas detection technology. Compared with common oxygen sensors such as electrochemical devices and ionic conductive ceramics, TDLAS has the advantages of high selectivity and sensitivity, fast response, on-line measurement and strong anti-background spectral interference ability. Oxygen (O2) is an important gas in habitable environments and is greatly significant to industrial production and human life, and the detection of O2 concentration is also widely used in these fields. Based on this, we adopt TDLAS technology to carry out high sensitivity measurements of O2 in air. Using a semiconductor laser with an output wavelength of 760 nm as the light source, the oxygen concentration in the environment is 20.56% by direct absorption spectroscopy, and the minimum detection limit is 5.53×10−3. In the wavelength modulation spectroscopy method, the laser wavelength modulation depth is optimized to obtain a complete second harmonic waveform, which can be used to calibrate the oxygen concentration. The SNR of the system is 380.74, and the minimum detection limit is about 540×10−6. The system realized in this paper has good oxygen detection ability and can be widely used in various fields of oxygen concentration detection.

     

  • loading
  • [1]
    隋丽丽, 黄微微, 王平, 等. 原位生长的α-Fe2O3/ZnO异质纳米棒阵列对乙醇气体的高选择性检测[J]. 应用化学,2021,38(7):857-865.

    SUI L L, HUANG W W, WANG P, et al. In situ deposited heterogeneous α-Fe2O3/ZnO nanorod arrays for highly selective detection of ethanol[J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 857-865. (in Chinese)
    [2]
    伞晓广, 巩晓辉, 陆一鸣, 等. NiO-WO3纳米立方块的制备及在甲醛检测中的应用[J]. 应用化学,2020,37(10):1203-1210. doi: 10.11944/j.issn.1000-0518.2020.10.200059

    SAN X G, GONG X H, LU Y M, et al. Synthesis of NiO-WO3 nanocubes and their application in detecting formaldehyde[J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1203-1210. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.10.200059
    [3]
    李佳祁, 付大友, 王竹青, 等. 基于气液相化学发光技术的臭氧在线检测方法[J]. 应用化学,2020,37(1):96-102. doi: 10.11944/j.issn.1000-0518.2020.01.190136

    LI J Q, FU D Y, WANG ZH Q, et al. Online ozone detection method based on gas-liquid phase chemiluminescence technology[J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 96-102. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.01.190136
    [4]
    KOCACHE R. The measurement of oxygen on gas mixtures[J]. Journal of Physics E:Scientific Instruments, 1986, 19(6): 401-410. doi: 10.1088/0022-3735/19/6/001
    [5]
    KOCACHE R M A, SWAN J, HOLMAN D F. A miniature rugged and accurate solid electrolyte oxygen sensor[J]. Journal of Physics E:Scientific Instruments, 1984, 17(6): 477-482. doi: 10.1088/0022-3735/17/6/014
    [6]
    MERILÄINEN P T. Sensors for oxygen analysis: paramagnetic, electrochemical, polarographic, and zirconium oxide technologies[J]. Biomedical Instrumentation &Technology, 1989, 23(6): 462-466.
    [7]
    刘云燕, 潘教青, 程传福, 等. 半导体激光器在氧气探测中的应用及关键技术[J]. 激光与红外,2011,41(5):501-505. doi: 10.3969/j.issn.1001-5078.2011.05.004

    LIU Y Y, PAN J Q, CHENG CH F, et al. Application and key technologies of semiconductor laser in the detection of oxygen[J]. Laser &Infrared, 2011, 41(5): 501-505. (in Chinese) doi: 10.3969/j.issn.1001-5078.2011.05.004
    [8]
    谢耀, 华道柱, 齐宇, 等. GFC-IFC技术在多组分微量气体分析中的应用[J]. 中国光学,2021,14(6):1378-1386. doi: 10.37188/CO.2021-0064

    XIE Y, HUA D ZH, QI Y, et al. Applications of GFC-IFC in trace multi-component gas analysis[J]. Chinese Optics, 2021, 14(6): 1378-1386. (in Chinese) doi: 10.37188/CO.2021-0064
    [9]
    MA Y F, HE Y, TONG Y, et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 2018, 26(24): 32103-32110. doi: 10.1364/OE.26.032103
    [10]
    MA Y F, LEWICKI R, RAZEGHI M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL[J]. Optics Express, 2013, 21(1): 1008-1019. doi: 10.1364/OE.21.001008
    [11]
    张步强, 许振宇, 刘建国, 等. 基于波长调制技术的激光器调制特性研究[J]. 光谱学与光谱分析,2019,39(9):2702-2707.

    ZHANG B Q, XU ZH Y, LIU J G, et al. Modulation characteristics of laser based on wavelength modulation technology[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2702-2707. (in Chinese)
    [12]
    钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese) doi: 10.37188/CO.2019-0203
    [13]
    SCHLOSSER H E, WOLFROM J, EBERT V, et al. In situ determination of molecular oxygen concentrations in full-scale fire-suppression tests using tunable diode laser absorption spectroscopy[J]. Proceedings of the Combustion Institute, 2001: 353-360.
    [14]
    张春晓. 基于可调谐半导体激光吸收光谱技术的O2和CO气体测量[D]. 杭州: 浙江大学, 2010: 86.

    ZHANG CH X. O2 and CO sensing based on tunable diode laser absorption spectroscopy[D]. Hangzhou: Zhejiang University, 2010: 86. (in Chinese)
    [15]
    GAO Y W, ZHANG Y J, CHEN D, et al. Real-time O2 measurement in a cement kiln with a TDLAS analyzer[J]. Proceedings of the SPIE, 2016, 10155: 101552R.
    [16]
    ZHOU X, YU J, WANG L, et al. Sensitive detection of oxygen using a diffused integrating cavity as a gas absorption cell[J]. Sensors and Actuators B:Chemical, 2017, 241: 1076-1081. doi: 10.1016/j.snb.2016.10.033
    [17]
    臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管激光吸收光谱的痕量水汽测量[J]. 光学学报,2018,38(11):1130004. doi: 10.3788/AOS201838.1130004

    ZANG Y P, NIE W, XU ZH Y, et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2018, 38(11): 1130004. (in Chinese) doi: 10.3788/AOS201838.1130004
    [18]
    袁志国, 马修真, 刘晓楠, 等. 利用可调谐激光吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi: 10.3788/co.20201302.0281
    [19]
    邓瑶, 唐雯, 李峥辉, 等. 基于直接吸收峰峰值标定的气体浓度反演方法研究[J]. 激光与光电子学进展,2021,58(3):0330002.

    DENG Y, TANG W, LI ZH H, et al. Gas concentration inversion method based on calibration of direct absorption peak value[J]. Laser &Optoelectronics Progress, 2021, 58(3): 0330002. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(1858) PDF downloads(471) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return