Volume 16 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
SU De-zhi, LIU Liang, WU Shi-yong, ZHANG Ji-lei, WANG Kun, LIU Ling-shun. Influence of radiation coupling effect on polarization characteristics of targets[J]. Chinese Optics, 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035
Citation: SU De-zhi, LIU Liang, WU Shi-yong, ZHANG Ji-lei, WANG Kun, LIU Ling-shun. Influence of radiation coupling effect on polarization characteristics of targets[J]. Chinese Optics, 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035

Influence of radiation coupling effect on polarization characteristics of targets

Funds:  Supported by National Natural Science Funds of China (No. 61205206)
More Information
  • Corresponding author: liul513@126.com
  • Received Date: 06 Mar 2022
  • Rev Recd Date: 06 Apr 2022
  • Available Online: 16 Jun 2022
  • Infrared polarization imaging technology has the advantages of long detection range and high rate of target recognition. However, the polarization characteristics of targets are easily affected by background radiation in complex environments, which significantly reduces the detection capability of infrared polarization equipment. Based on the polarized Bidirectional Reflectance Distribution Function (pBRDF), this paper establishes a calculation model for the target’s Degree of Linear Polarization (DoLP), comprehensively considering the radiation coupling effect between the target and the background. The variation of the target’s DoLP under two conditions - with and without a strong radiation backplate – is then comparatively studied. Additionally, in order to solve problems of land-based and airborne small-angle detection, simulation research is done to find out how the target’s DoLP is influenced by parameters such as the temperatures and the included angle between the target and the backplate. Research results show that the radiation coupling effect significantly reduces the target’s degree of polarization when the temperatures of the target and the backplate are the same, but it does not change the trend of the target’s degree of polarization, which increases with an increase in temperature. When the temperature of the target and the backplate is 30 °C, 40 °C, and 50 °C, the maximum degree of polarization of the target is 63.7%, 44.9%, and 42.2% of those without a strong radiation backplate, respectively. It can be concluded then that the higher the temperature, the stronger the radiation coupling effect between the target and the backplate, and the greater the reduction of the target’s degree of polarization; and that the strength of the radiation coupling effect is not only related to the temperature, but also to the included angle between the target and the backplate. With the increase of the included angle, the target’s DoLP first increases and then decreases, and the maximum value is obtained when the included angle is about 105°. Therefore, the radiation coupling effect changes the target’s DoLP to a certain extent, thereby affecting the detection ability of the infrared polarization equipment. Finally, through building a long-wave infrared polarization imaging system, the established calculation model of the target’s degree of polarization is verified by experiments, whose results are basically consistent with those of the simulation analysis. Overall, the research results in this paper have certain guiding significance for improving the detection and identification capabilities of land-based and airborne infrared polarization equipment.

     

  • loading
  • [1]
    段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术,2014,36(3):190-195. doi: 10.11846/j.issn.1001_8891.201403003

    DUAN J, FU Q, MO CH H, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. (in Chinese) doi: 10.11846/j.issn.1001_8891.201403003
    [2]
    HIOKI S, RIEDI J, DJELLALI M S. A study of polarimetric error induced by satellite motion: application to the 3MI and similar sensors[J]. Atmospheric Measurement Techniques, 2021, 14(3): 1801-1816. doi: 10.5194/amt-14-1801-2021
    [3]
    LI S Y, JIAO J N, WANG CH. Research on polarized multi-spectral system and fusion algorithm for remote sensing of vegetation status at night[J]. Remote Sensing, 2021, 13(17): 3510. doi: 10.3390/rs13173510
    [4]
    ZHOU Y, LU Y CH, SHEN Y F, et al. Polarized remote inversion of the refractive index of marine spilled oil from PARASOL images under Sunglint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2710-2719. doi: 10.1109/TGRS.2019.2953640
    [5]
    金伟其, 王霞, 曹峰梅, 等. 水下光电成像技术与装备研究进展(下)[J]. 红外技术,2011,33(3):125-132. doi: 10.3969/j.issn.1001-8891.2011.03.001

    JIN W Q, WANG X, CAO F M, et al. Review of underwater Opto-electrical imaging technology and equipment (Ⅱ)[J]. Infrared Technology, 2011, 33(3): 125-132. (in Chinese) doi: 10.3969/j.issn.1001-8891.2011.03.001
    [6]
    ZHANG J H, ZHANG Y, SHI ZH G. Enhancement of dim targets in a sea background based on long-wave infrared polarisation features[J]. IET Image Processing, 2018, 12(11): 2042-2050. doi: 10.1049/iet-ipr.2018.5607
    [7]
    宫剑, 吕俊伟, 刘亮, 等. 红外偏振图像的舰船目标检测[J]. 光谱学与光谱分析,2020,40(2):586-594.

    GONG J, LÜ J W, LIU L, et al. Ship target detection based on infrared polarization image[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 586-594. (in Chinese)
    [8]
    宫剑, 吕俊伟, 刘亮, 等. 红外偏振舰船目标自适应尺度局部对比度检测[J]. 光学 精密工程,2020,28(1):223-233. doi: 10.3788/OPE.20202801.0223

    GONG J, LÜ J W, LIU L, et al. Adaptive scale local contrast detection for infrared polarization ship targets[J]. Optics and Precision Engineering, 2020, 28(1): 223-233. (in Chinese) doi: 10.3788/OPE.20202801.0223
    [9]
    张弛, 吴鑫, 谢建. 基于双向反射分布函数的海面红外偏振特性表征模型[J]. 光学 精密工程,2020,28(6):1303-1313. doi: 10.3788/OPE.20202806.1303

    ZHANG CH, WU X, XIE J. Infrared polarization characteristics on sea surface based on bidirectional reflection distribution function[J]. Optics and Precision Engineering, 2020, 28(6): 1303-1313. (in Chinese) doi: 10.3788/OPE.20202806.1303
    [10]
    宿德志, 吴世永, 刘亮, 等. 基于海浪谱建模的海面偏振仿真研究[J]. 激光与光电子学进展,2021,58(14):1411001.

    SU D ZH, WU SH Y, LIU L, et al. Ocean wave spectrum modeling-based sea surface polarization simulation[J]. Laser &Optoelectronics Progress, 2021, 58(14): 1411001. (in Chinese)
    [11]
    GURTON K P, DAHMANI R, VIDEEN G. Measured degree of infrared polarization for a variety of thermal emitting surfaces[R]. Adelphi: Army Research Laborary, 2004: 1-19.
    [12]
    GURTON K P, DAHMANI R. Effect of surface roughness and complex indices of refraction on polarized thermal emission[J]. Applied Optics, 2005, 44(26): 5361-5367. doi: 10.1364/AO.44.005361
    [13]
    寻丽娜, 薛模根, 曾献芳, 等. 飞机材料及其伪装涂层的热红外偏振特性研究[J]. 红外技术,2016,38(9):783-787. doi: 10.11846/j.issn.1001_8891.201609013

    XUN L N, XUE M G, ZENG X F, et al. Research of infrared polarization characteristics of aircraft materials and its camouflage coating[J]. Infrared Technology, 2016, 38(9): 783-787. (in Chinese) doi: 10.11846/j.issn.1001_8891.201609013
    [14]
    谢琛, 王峰. 伪装涂层红外偏振辐射特性实验研究[J]. 红外技术,2015,37(10):890-894.

    XIE CH, WANG F. Research on infrared polarization radiation properties experiment of camouflage coating[J]. Infrared Technology, 2015, 37(10): 890-894. (in Chinese)
    [15]
    王凯, 刘宏, 张修兴. 空间目标热控涂层材料偏振反射特性研究[J]. 光子学报,2020,49(12):1229003.

    WANG K, LIU H, ZHANG X X. Study on polarized reflection characteristics of space object thermal control coatings[J]. Acta Photonica Sinica, 2020, 49(12): 1229003. (in Chinese)
    [16]
    FLYNN D S, ALEXANDER C. Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix[J]. Optical Engineering, 1995, 34(6): 1646-1650. doi: 10.1117/12.202105
    [17]
    徐文斌, 陈伟力, 李军伟, 等. 采用长波红外高光谱偏振技术的目标探测实验[J]. 红外与激光工程,2017,46(5):0504005. doi: 10.3788/IRLA201746.0504005

    XU W B, CHEN W L, LI J W, et al. Experiment of target detection based on long-wave infrared hyperspectral polarization technology[J]. Infrared and Laser Engineering, 2017, 46(5): 0504005. (in Chinese) doi: 10.3788/IRLA201746.0504005
    [18]
    柳祎, 史浩东, 姜会林, 等. 粗糙目标表面红外偏振特性研究[J]. 中国光学,2020,13(3):459-471.

    LIU Y, SHI H D, JIANG H L, et al. Infrared polarization properties of targets with rough surface[J]. Chinese Optics, 2020, 13(3): 459-471. (in Chinese)
    [19]
    汪震, 洪津, 叶松, 等. 金属表面粗糙度对热红外偏振特性影响研究[J]. 光子学报,2007,36(8):1500-1503.

    WANG ZH, HONG J, YE S, et al. Study on effect of metal surface roughness on polarized thermal emission[J]. Acta Photonica Sinica, 2007, 36(8): 1500-1503. (in Chinese)
    [20]
    汪方斌, 伊龙, 王峰, 等. 基于漫反射优化的金属表面偏振双向反射分布函数[J]. 光学学报,2021,41(11):1129002. doi: 10.3788/AOS202141.1129002

    WANG F B, YI L, WANG F, et al. Polarization bidirectional reflection distribution function of metal surfaces based on diffuse reflection optimization[J]. Acta Optica Sinica, 2021, 41(11): 1129002. (in Chinese) doi: 10.3788/AOS202141.1129002
    [21]
    管风, 张晓晖, 韩宏伟. 金属随机粗糙表面的散射光偏振特性的实验研究[J]. 海军工程大学学报,2020,32(6):101-107. doi: 10.7495/j.issn.1009-3486.2020.06.017

    GUAN F, ZHANG X H, HAN H W. Experimental study of polarization properties of scattering light from metal random rough surfaces[J]. Journal of Naval University of Engineering, 2020, 32(6): 101-107. (in Chinese) doi: 10.7495/j.issn.1009-3486.2020.06.017
    [22]
    TYO J S, RATLIFF B M, BOGER J K, et al. The effects of thermal equilibrium and contrast in LWIR Polarimetric images[J]. Optics Express, 2007, 15(23): 15161-15167. doi: 10.1364/OE.15.015161
    [23]
    FELTON M, GURTON K P, PEZZANITI J L, et al. Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery[J]. Optics Express, 2010, 18(15): 15704-15713. doi: 10.1364/OE.18.015704
    [24]
    LIU H ZH, SHI Z L, FENG B. An infrared DoLP computational model considering surrounding irradiance[J]. Infrared Physics &Technology, 2020, 106: 103043.
    [25]
    杨志勇, 陆高翔, 张志伟, 等. 热辐射环境下目标红外偏振特性分析[J]. 光学学报,2022,42(2):0220001.

    YANG ZH Y, LU G X, ZHANG ZH W, et al. Analysis of infrared polarization characteristics of target in thermal radiation environment[J]. Acta Optica Sinica, 2022, 42(2): 0220001. (in Chinese)
    [26]
    SU D ZH, LIU L, LIU L SH, et al. An infrared DoLP model considering the radiation coupling effect[J]. Photonics, 2021, 8(12): 546. doi: 10.3390/photonics8120546
    [27]
    倪歆玥, 余书田, 唐玉俊, 等. 海雾中舰船目标的偏振探测能力研究[J]. 红外与毫米波学报,2021,40(1):96-101. doi: 10.11972/j.issn.1001-9014.2021.01.014

    NI X Y, YU SH T, TANG Y J, et al. The research on polarimetric detection capability of ship targets in the sea fog[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 96-101. (in Chinese) doi: 10.11972/j.issn.1001-9014.2021.01.014
    [28]
    张景华, 张焱, 石志广. 基于长波红外的海面场景偏振特性分析与建模[J]. 红外与毫米波学报,2018,37(5):586-594. doi: 10.11972/j.issn.1001-9014.2018.05.011

    ZHANG J H, ZHANG Y, SHI ZH G. Study and modeling of infrared polarization characteristics based on sea scene in long wave band[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 586-594. (in Chinese) doi: 10.11972/j.issn.1001-9014.2018.05.011
    [29]
    PRIEST R G, GERMER T A. Polarimetric BRDF in the microfacet model: theory and measurements[C]. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, NIST, 2000: 169-181.
    [30]
    HYDE IV M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153. doi: 10.1364/OE.17.022138
    [31]
    PÉREZ J J G, OSSIKOVSKI R. Polarized Light and the Mueller Matrix Approach[M]. Boca Raton: CRC Press, 2016: 107-109.
    [32]
    THILAK V, VOELZ D G, CREUSERE C D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications[J]. Applied Optics, 2007, 46(30): 7527-7536. doi: 10.1364/AO.46.007527
    [33]
    朱达荣, 冯康康, 汪方斌, 等. 粗糙表面六参量偏振双向反射分布函数模型[J]. 激光与光电子学进展,2020,57(9):092901.

    ZHU D R, FENG K K, WANG F B, et al. Six-parameter polarized bidirectional reflectance distribution function model for rough surfaces[J]. Laser &Optoelectronics Progress, 2020, 57(9): 092901. (in Chinese)
    [34]
    姚竞争, 韩端锋, 郑向阳. 某三体舰船外形雷达隐身性设计[J]. 舰船科学技术,2011,33(7):62-67. doi: 10.3404/j.issn.1672-7649.2011.07.015

    YAO J ZH, HAN D F, ZHENG X Y. The shape optimal design considering the radar stealthy performance of a trimaran warship[J]. Ship Science and Technology, 2011, 33(7): 62-67. (in Chinese) doi: 10.3404/j.issn.1672-7649.2011.07.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(844) PDF downloads(296) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return