Volume 15 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
YOU Ya-jun, XU Xin, WANG Lin-yi, FENG Liu-yan, LIU Yi, GENG Wen-ping, HE Wen-jun. Tunable narrowband microwave photonic filter based on brillouin fiber oscillator[J]. Chinese Optics, 2022, 15(4): 660-667. doi: 10.37188/CO.2022-0057
Citation: YOU Ya-jun, XU Xin, WANG Lin-yi, FENG Liu-yan, LIU Yi, GENG Wen-ping, HE Wen-jun. Tunable narrowband microwave photonic filter based on brillouin fiber oscillator[J]. Chinese Optics, 2022, 15(4): 660-667. doi: 10.37188/CO.2022-0057

Tunable narrowband microwave photonic filter based on brillouin fiber oscillator

doi: 10.37188/CO.2022-0057
Funds:  Supported by National Key R&D Program of China (No. 2019YFF0301802); Key Research and Development Projects of Shanxi Province (No. 201903D121124); China Postdoctoral Science Foundation (No. 2020M682113); Shanxi Scholarship Council of China (No. 2020-112); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0268); Fundamental Research Program of Shanxi Province (No. 2021030212558, No. 20210302124390); Shanxi Postgraduate Innovation Project (No. 2021Y616).
More Information
  • Corresponding author: liuyi28@163.com
  • Received Date: 29 Mar 2022
  • Rev Recd Date: 03 May 2022
  • Available Online: 27 Jun 2022
  • In order to make sure a microwave photonic filter both have wide tuning range and high frequency selectivity, a microwave photonic filter with a wide tuning range and narrow filter bandwidth based on a Brillouin oscillator is proposed and verified for the first time. The core of the filter is a Brillouin fiber oscillator with a cavity length of 10 m, and the stimulated Brillouin scattering pump and optical carrier signal are provided by two different tunable lasers. After the Brillouin gain spectrum interacts with the optical modulation sideband, the Brillouin fiber oscillator is used to narrow the spectral linewidth to realize narrowband microwave photonic filtering. By changing the pump wavelength, the filter passband can be tuned stably. The experimental results show that the microwave photonic filter can be stably tuned in the frequency range of 0−20 GHz. The out-of-band rejection ratio is found to be about 20 dB, and its 3-dB bandwidth and maximum Q value are 6.2 kHz and 3.222×106, respectively.To the best of our knowledge, this is the highest value of a high-Q single-passband MPF reported to date. At the same time, the MPF has the advantages of wide tunability, high side mode suppression and a simple structure.

     

  • loading
  • [1]
    YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335. doi: 10.1109/JLT.2008.2009551
    [2]
    CHEN T, YI X K, LI L W, et al. Single passband microwave photonic filter with wideband tunability and adjustable bandwidth[J]. Optics Letters, 2012, 37(22): 4699-4701. doi: 10.1364/OL.37.004699
    [3]
    KHILO A, SPECTOR S J, GREIN M E, et al. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Optics Express, 2012, 20(4): 4454-4469. doi: 10.1364/OE.20.004454
    [4]
    陶源盛, 王兴军, 胡薇薇. 硅基微波光子滤波器的研究进展[J]. 半导体光电,2021,42(1):1-10.

    TAO Y SH, WANG X J, HU W W. Recent progresses of silicon integrated microwave photonic filters[J]. Semiconductor Optoelectronics, 2021, 42(1): 1-10. (in Chinese)
    [5]
    吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121

    WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese) doi: 10.37188/CO.2020-0121
    [6]
    余晓畅, 许雅晴, 蔡佳辰, 等. 可调微纳滤波结构的研究进展[J]. 中国光学,2021,14(5):1069-1088. doi: 10.37188/CO.2021-0044

    YU X CH, XU Y Q, CAI J CH, et al. Progress of tunable micro-Nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. (in Chinese) doi: 10.37188/CO.2021-0044
    [7]
    王文轩, 陶继, 黄龙. 基于光注入法布里-珀罗激光器的窄带可调谐微波光子滤波器[J]. 中国激光,2017,44(10):1006002. doi: 10.3788/CJL201744.1006002

    WANG W X, TAO J, HUANG L. Narrowband tunable microwave photonic filter based on Fabry-Perot laser with optical injection[J]. Chinese Journal of Lasers, 2017, 44(10): 1006002. (in Chinese) doi: 10.3788/CJL201744.1006002
    [8]
    胡总华, 聂奎营, 阮毅, 等. 基于色散光纤环级联结构的可调谐带通微波光子滤波器[J]. 半导体光电,2019,40(2):189-192,199.

    HU Z H, NIE K Y, RUAN Y, et al. Bandpass-tunable microwave photonic filter based on dispersion fiber loops with cascaded structure[J]. Semiconductor Optoelectronics, 2019, 40(2): 189-192,199. (in Chinese)
    [9]
    GAO L, CHEN X F, YAO J P. Tunable microwave photonic filter with a narrow and flat-top passband[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(7): 362-364. doi: 10.1109/LMWC.2013.2262263
    [10]
    ZHANG T T, XIONG J T, ZHENG J L, et al. Wideband tunable single bandpass microwave photonic filter based on FWM dynamics of optical-injected DFB laser[J]. Electronics Letters, 2016, 52(1): 57-59. doi: 10.1049/el.2015.1696
    [11]
    张梓平, 牛哓晨, 黄杰, 等. 基于光纤环谐振腔的高性能微波光子滤波器[J]. 光学学报,2020,40(21):2106001. doi: 10.3788/AOS202040.2106001

    ZHANG Z P, NIU X CH, HUANG J, et al. High-performance microwave photonic filter based on fiber ring resonator[J]. Acta Optica Sinica, 2020, 40(21): 2106001. (in Chinese) doi: 10.3788/AOS202040.2106001
    [12]
    严艺, 廖同庆, 吕晓光, 等. 新型多抽头复系数微波光子滤波器[J]. 红外与激光工程,2019,48(1):0120001. doi: 10.3788/IRLA201948.0120001

    YAN Y, LIAO T Q, LU X G, et al. Novel multitap complex coefficient microwave photonic filter[J]. Infrared and Laser Engineering, 2019, 48(1): 0120001. (in Chinese) doi: 10.3788/IRLA201948.0120001
    [13]
    WANG W T, LIU J G, MEI H K, et al. Microwave photonic filter with complex coefficient based on optical carrier phase shift utilizing two stimulated Brillouin scattering pumps[J]. IEEE Photonics Journal, 2015, 7(1): 1-8.
    [14]
    JIANG H Y, YAN L SH, PAN W, et al. Ultra-high speed RF filtering switch based on stimulated Brillouin scattering[J]. Optics Letters, 2018, 43(2): 279-282. doi: 10.1364/OL.43.000279
    [15]
    张卫华, 张丽丽, 曹晔. 基于受激布里渊散射的微波光子滤波器[J]. 南开大学学报(自然科学版),2014,47(1):55-60.

    ZHANG W H, ZHANG L L, CAO Y. Microwave photons filter based on stimulated Brillouin scattering[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2014, 47(1): 55-60. (in Chinese)
    [16]
    徐翌明, 潘炜, 卢冰, 等. 基于受激布里渊散射的多阻带微波光子滤波器[J]. 中国激光,2018,45(11):1106004. doi: 10.3788/CJL201845.1106004

    XU Y M, PAN W, LU B, et al. Multi-stopband microwave photonic filter based on stimulated Brillouin scattering[J]. Chinese Journal of Lasers, 2018, 45(11): 1106004. (in Chinese) doi: 10.3788/CJL201845.1106004
    [17]
    WANG T, XIAO J L, WU J L, et al. Dual-passband microwave photonic filter based on a directly modulated microcavity laser[J]. IEEE Photonics Technology Letters, 2021, 33(4): 185-188. doi: 10.1109/LPT.2021.3050818
    [18]
    LI ZH K, ZHANG ZH Y, ZENG ZH, et al. Tunable dual-passband microwave photonic filter with a fixed frequency interval using phase-to-intensity modulation conversion by stimulated Brillouin scattering[J]. Applied Optics, 2019, 58(8): 1961-1965. doi: 10.1364/AO.58.001961
    [19]
    ZENG ZH, ZHANG ZH Y, LI ZH K, et al. Freely tunable dual-passband microwave photonic filter based on phase-to-intensity modulation conversion by stimulated Brillouin scattering[J]. IEEE Photonics Journal, 2019, 11(1): 5501009.
    [20]
    WEN H SH, LI M, LI W, et al. Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated brillouin scattering and a fiber ring resonator[J]. Optics Letters, 2018, 43(19): 4659-4662. doi: 10.1364/OL.43.004659
    [21]
    WEN H SH, XU B R, ZHAI K P, et al. Ultrahigh spectral resolution single passband microwave photonic filter[J]. Optics Express, 2021, 29(18): 28725-28740. doi: 10.1364/OE.436173
    [22]
    KURASHIMA T, HORIGUCHI T, TATEDA M. Thermal effects of Brillouin gain spectra in single-mode fibers[J]. IEEE Photonics Technology Letters, 1990, 2(10): 718-720. doi: 10.1109/68.60770
    [23]
    NICATI P A, TOYAMA K, HUANG S, et al. Temperature effects in a Brillouin fiber ring laser[J]. Optics Letters, 1993, 18(24): 2123-2125. doi: 10.1364/OL.18.002123
    [24]
    刘毅, 于晋龙, 王红杰, 等. 基于反馈光纤环的可调多波长布里渊掺铒光纤激光器[J]. 中国激光,2014,41(2):0202003.

    LIU Y, YU J L, WANG H J, et al. Tunable multiwavelength brillouin-erbium fiber laser based on feedback fiber loop[J]. Chinese Journal of Lasers, 2014, 41(2): 0202003. (in Chinese)
    [25]
    黄海碧, 刘文杰, 孙粤辉, 等. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学,2022,15(2):251-258. doi: 10.37188/CO.2021-0158

    HUANG H B, LIU W J, SUN Y H, et al. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. (in Chinese) doi: 10.37188/CO.2021-0158
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(665) PDF downloads(130) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return