Volume 16 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
YUAN Ye, TIAN Lei-chao, GUO Cheng, ZHAO Qing. Spectral diagnosis of an arc jet actuator[J]. Chinese Optics, 2023, 16(2): 296-304. doi: 10.37188/CO.2022-0097
Citation: YUAN Ye, TIAN Lei-chao, GUO Cheng, ZHAO Qing. Spectral diagnosis of an arc jet actuator[J]. Chinese Optics, 2023, 16(2): 296-304. doi: 10.37188/CO.2022-0097

Spectral diagnosis of an arc jet actuator

Funds:  Supported by the Key R & D Project of Department of Science and Technology of Sichuan Province (No. 2021YFG0369); International Cooperation Project of Science and Technology Innovation of Sichuan Province (No. 2021YFH0057); the Fundamental Research Funds for the Central Universities of UESTC (No. ZYGX2020J014)
More Information
  • Corresponding author: zhaoq@uestc.edu.cn
  • Received Date: 13 May 2022
  • Rev Recd Date: 30 May 2022
  • Accepted Date: 24 Aug 2022
  • Available Online: 24 Aug 2022
  • At present, the simulation research of arc actuators is limited to only obtaining the working characteristics of the plasma generated by the actuator, such as potential, pressure, temperature and velocity, while the plasma state is limited to only diagnosing its electron temperature and electron density by spectrum. The two are separated. This paper attempts to unify the two. Therefore, the arc jet plasma actuator designed here adopts the finite element method to solve the nonlinear multi physical equations. The working characteristics of the arc jet plasma actuator are numerically simulated, and the potential, pressure, temperature and velocity distributions inside the actuator are obtained. On this basis, the electron density is calculated and the simulation calculation model of the plasma state (electron temperature and electron density) of the actuator is obtained from the working condition of the actuator. Then the spectral diagnosis of the jet plasma is carried out by using the emission spectral diagnosis method, and the electron density of plasma is calculated by using the intensity ratio method of discrete spectral lines. The diagnostic experiment of the arc plasma actuator shows that the maximum electron temperature is 10505.8 K and the maximum electron density is 5.75×1022 m−3. For the plasma electron temperature and plasma density under different working conditions, the experimental and simulation results increase with the increase of inlet gas flow and discharge current. It shows that our simulation model of plasma state is reasonable and applicable for our miniaturized arc jet actuator with high jet velocity.

     

  • loading
  • [1]
    SHIN J, NARAYANASWAMY V, RAJA L L, et al. Characterization of a direct-current glow discharge plasma actuator in low-pressure supersonic flow[J]. AIAA Journal, 2007, 45(7): 1596-1605. doi: 10.2514/1.27197
    [2]
    NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305. doi: 10.2514/1.41352
    [3]
    ZHAO N, LI J M, MA Q X, et al. Periphery excitation of laser-induced CN fluorescence in plasma using laser-induced breakdown spectroscopy for carbon detection[J]. Chinese Optics Letters, 2020, 18(8): 083001. doi: 10.3788/COL202018.083001
    [4]
    BELINGER A, NAUDÉ N, CAMBRONNE J P, et al. Plasma synthetic jet actuator: electrical and optical analysis of the discharge[J]. Journal of Physics D:Applied Physics, 2014, 47(34): 345202. doi: 10.1088/0022-3727/47/34/345202
    [5]
    INOUE K, TAKAHASHI S, SAKAKIBARA N, et al. Spatiotemporal optical emission spectroscopy to estimate electron density and temperature of plasmas in solution[J]. Journal of Physics D:Applied Physics, 2020, 53(23): 235202. doi: 10.1088/1361-6463/ab78d5
    [6]
    潘成刚. 脉冲MIG焊电弧物理特性光谱诊断 [D]. 上海: 上海交通大学, 2013.

    PAN C G. Diagnosis the physical characteristics of pulsed MIG welding arc by spectrum[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
    [7]
    林敏, 徐浩军, 魏小龙, 等. 射频电感耦合闭式等离子体产生与光谱诊断的实验[J]. 空军工程大学学报(自然科学版),2015,16(2):10-14.

    LIN M, XU H J, WEI X L, et al. Experimental study of generation and spectroscopic diagnosis of inductively coupled plasma in closed cavity[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(2): 10-14. (in Chinese)
    [8]
    李磊, 陈晓东, 袁承勋, 等. Ar等离子体射流发射光谱诊断研究[J]. 发光学报,2019,40(8):1049-1054. doi: 10.3788/fgxb20194008.1049

    LI L, CHEN X D, YUAN CH X, et al. Emission spectrum diagnose to Ar plasma jet[J]. Chinese Journal of Luminescence, 2019, 40(8): 1049-1054. (in Chinese) doi: 10.3788/fgxb20194008.1049
    [9]
    陈传杰. 大气压脉冲调制表面波等离子体的发射光谱诊断及特性研究[D]. 大连: 大连理工大学, 2019.

    CHEN CH J. Optical emission spectroscopic diagnosis on atmospheric-pressure pulse-modulated surface wave plasma and its characteristics[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [10]
    张申, 郭玉玉. 一锅法合成聚乙烯吡咯烷酮修饰的铜纳米团簇用于槲皮素的检测[J]. 应用化学,2020,37(9):1069-1075. doi: 10.11944/j.issn.1000-0518.2020.09.200045

    ZHANG SH, GUO Y Y. One-pot synthesis of fluorescent polyvinyl pyrrolidone-stabilized Cu nanoclusters for the determination of quercetin[J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1069-1075. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.09.200045
    [11]
    ZHAO M T, ZHANG D W, ZHENG L L, et al. Rapid quantitative detection of mineral oil contamination in vegetable oil by near-infrared spectroscopy[J]. Chinese Optics Letters, 2020, 18(4): 043001. doi: 10.3788/COL202018.043001
    [12]
    刘丽娴, 宦惠庭, ANDREAS M, 等. 多组分变压器油溶解气体的傅里叶变换红外光声光谱定量检测[J]. 光谱学与光谱分析,2020,40(3):684-687.

    LIU L X, HUAN H T, ANDREAS M, et al. Multiple dissolved gas analysis in transformer oil based on Fourier transform infrared photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 684-687. (in Chinese)
    [13]
    邓培渊, 袁伟, 李长看, 等. 防腐剂苯甲酸与人血清白蛋白相互作用[J]. 应用化学,2021,38(8):1014-1021.

    DENG P Y, YUAN W, LI CH K, et al. Interaction between preservative benzoic acid and human serum albumin[J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1014-1021. (in Chinese)
    [14]
    DENG A H, ZENG Z X, DENG J J. VIPA-based two-component detection for a coherent population trapping experiment[J]. Chinese Optics Letters, 2021, 19(8): 083001. doi: 10.3788/COL202119.083001
    [15]
    邢雅艳, 史宇哲, 邓世贤, 等. 儿茶素-银纳米复合材料的制备及其应用[J]. 应用化学,2020,37(9):1062-1068. doi: 10.11944/j.issn.1000-0518.2020.09.200076

    XING Y Y, SHI Y ZH, DENG SH X, et al. Preparation and application of catechin-silver nanocomposites[J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1062-1068. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.09.200076
    [16]
    JO J, SIDDIQUI J, ZHU Y H, et al. Photoacoustic spectral analysis at ultraviolet wavelengths for characterizing the Gleason grades of prostate cancer[J]. Optics Letters, 2020, 45(21): 6042-6045. doi: 10.1364/OL.409249
    [17]
    CHU Y W, CHEN F, TANG Y, et al. Diagnosis of nasopharyngeal carcinoma from serum samples using hyperspectral imaging combined with a chemometric method[J]. Optics Express, 2018, 26(22): 28661-28671. doi: 10.1364/OE.26.028661
    [18]
    CHEN K, QIN Y J, ZHENG F, et al. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells[J]. Optics Letters, 2006, 31(13): 2015-2017. doi: 10.1364/OL.31.002015
    [19]
    ZHU CH F, BRESLIN T M, HARTER J, et al. Model based and empirical spectral analysis for the diagnosis of breast cancer[J]. Optics Express, 2008, 16(19): 14961-14978. doi: 10.1364/OE.16.014961
    [20]
    CHEN G, ZHU J ZH, LI X G. Influence of a dielectric decoupling layer on the local electric field and molecular spectroscopy in plasmonic nanocavities: a numerical study[J]. Chinese Optics Letters, 2021, 19(12): 123001. doi: 10.3788/COL202119.123001
    [21]
    ZHAO Y ZH, SU Y L, HOU X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electronic Advances, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008
    [22]
    LI J Z, HU J CH, MA J Q, et al. Identifying self-trapped excitons in 2D perovskites by Raman spectroscopy [Invited][J]. Chinese Optics Letters, 2021, 19(10): 103001. doi: 10.3788/COL202119.103001
    [23]
    MAŠLÁNI A, SEMBER V, HRABOVSKÝ M. Spectroscopic determination of temperatures in plasmas generated by arc torches[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2017, 133: 14-20. doi: 10.1016/j.sab.2017.04.011
    [24]
    董丽芳, 刘为远, 杨玉杰, 等. 大气压等离子体炬电子密度的光谱诊断[J]. 物理学报,2011,60(4):045202. doi: 10.7498/aps.60.045202

    DONG L F, LIU W Y, YANG Y J, et al. Spectral diagnostics of electron density of plasma torch at atmospheric pressure[J]. Acta Physica Sinica, 2011, 60(4): 045202. (in Chinese) doi: 10.7498/aps.60.045202
    [25]
    姜旭, 史宗谦, 李兴文, 等. 不同灭弧介质中等离子体的光谱诊断[C]. 输变电年会, 2011.

    JIANG X, SHI Z Q, LI X W, et al. . Spectral diagnosis of plasma in different arc extinguishing media[C]. Annual Meeting of Power Transmission and Transformation, 2011. (in Chinese)
    [26]
    WEN K, LIU X ZH, LIU M, et al. Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying[J]. Surface and Coatings Technology, 2019, 371: 312-321. doi: 10.1016/j.surfcoat.2019.04.053
    [27]
    XU X W, YANG SH Y, ZHOU Q, et al. A 2-D axisymmetric magneto-hydrodynamic model of a DC arc plasma torch and its solution methodology[J]. IEEE Transactions on Magnetics, 2020, 56(1): 7503904.
    [28]
    GANIÈV Y C, GORDEEV V P, KRASILNIKOV A V, et al. Aerodynamic drag reduction by plasma and hot-gas injection[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(1): 10-17. doi: 10.2514/2.6504
    [29]
    CHINÈ B. A 2D model of a plasma torch[C]. Proceedings of the 2016 COMSOL Conference, 2016.
    [30]
    张金禾, 周严东, 刘汝兵, 等. 低压汞灯等离子体电子密度分布光谱诊断研究[J]. 机电技术,2015(6):88-91. doi: 10.3969/j.issn.1672-4801.2015.06.029

    ZHANG J H, ZHOU Y D, LIU R B, et al. Spectral diagnosis of plasma electron density distribution in low pressure mercury lamp[J]. Mechanical &Electrical Technology, 2015(6): 88-91. (in Chinese) doi: 10.3969/j.issn.1672-4801.2015.06.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(640) PDF downloads(301) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return