Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
LI Yun-hui. Review of physical implementation architecture in compressive spectral imaging system[J]. Chinese Optics, 2022, 15(5): 929-945. doi: 10.37188/CO.2022-0104
Citation: LI Yun-hui. Review of physical implementation architecture in compressive spectral imaging system[J]. Chinese Optics, 2022, 15(5): 929-945. doi: 10.37188/CO.2022-0104

Review of physical implementation architecture in compressive spectral imaging system

Funds:  Supported by National Natural Science Foundation of China (No.62005266); Youth Innovation Promotion Association, CAS (No.2022219)
More Information
  • Corresponding author: liyunhui@ciomp.ac.cn
  • Received Date: 26 May 2022
  • Rev Recd Date: 27 Jun 2022
  • Available Online: 29 Aug 2022
  • Different from the traditional point-to-point mapping imaging method, computational optical imaging combines the physical regulation of the front-end optical signal with the processing of the back-end digital signal to make the image information acquisition more efficient. This new imaging mechanism is expected to alleviate the contradiction between low manufacturing cost and high performance indicators under the framework of traditional imaging technology, especially in the acquisition of high-dimensional image information. Since the system architecture supported by physical devices is the cornerstone of computational optical imaging, aiming at the sub-technical field of compressive spectral imaging, in this paper, we introduce the existing optical devices that can realize spatial or spectral modulation. Based on this, the architecture of multi-type compressive spectral imaging system is sorted out and summarized, which can be categorized as single-pixel spectral imaging, coded aperture spectral imaging, spatial-spectral dual-coded spectral imaging, microarray spectral imaging and scattering medium spectral imaging, based on the information modulation process. We focus on the information modulation and acquisition principles of various system architectures and their modulation effects on the spatial-spectral data cube, and then analyze and explore the common issues. Finally, the technical challenges faced are given, and the future development trend is discussed.

     

  • loading
  • [1]
    于磊. 成像光谱仪的发展与应用(特邀)[J]. 红外与激光工程,2022,51(1):20210940.

    YU L. Development and application of imaging spectrometer (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210940. (in Chinese)
    [2]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [3]
    CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083
    [4]
    CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731
    [5]
    YUAN X, BRADY D J, KATSAGGELOS A K. Snapshot compressive imaging: theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88. doi: 10.1109/MSP.2020.3023869
    [6]
    SUN T, KELLY K. Compressive sensing hyperspectral imager[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2009: CTuA5.
    [7]
    LI CH B, SUN T, KELLY K F, et al. A compressive sensing and unmixing scheme for hyperspectral data processing[J]. IEEE Transactions on Image Processing, 2012, 21(3): 1200-1210. doi: 10.1109/TIP.2011.2167626
    [8]
    MAGALHAES F, ARAÚJO F M, CORREIA M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing[J]. Optical Engineering, 2012, 51(7): 071406. doi: 10.1117/1.OE.51.7.071406
    [9]
    CHENNING T, HUANZHENG Z, XUCHENG W, et al. Compressive single-pixel hyperspectral imaging using RGB sensors[J]. Optics Express, 2021, 29(7): 11207-11220. doi: 10.1364/OE.416388
    [10]
    KRAVETS V, KONDRASHOV P, STERN A. Compressive ultraspectral imaging using multiscale structured illumination[J]. Applied Optics, 2019, 58(22): F32-F39. doi: 10.1364/AO.58.000F32
    [11]
    GARCIA H, CORREA C V, ARGUELLO H. Optimized sensing matrix for single pixel multi-resolution compressive spectral imaging[J]. IEEE Transactions on Image Processing, 2020, 29: 4243-4253. doi: 10.1109/TIP.2020.2971150
    [12]
    BIAN L H, SUO J L, SITU G H, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6: 24752. doi: 10.1038/srep24752
    [13]
    STARLING D J, STORER I, HOWLAND G A. Compressive sensing spectroscopy with a single pixel camera[J]. Applied Optics, 2016, 55(19): 5198-5202. doi: 10.1364/AO.55.005198
    [14]
    LI Z W, SUO J L, HU X M, et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation[J]. Scientific Reports, 2017, 7: 41435. doi: 10.1038/srep41435
    [15]
    MARTÍN G, BIOUCAS-DIAS J M. Spatial-spectral hyperspectral image compressive sensing[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2017: 3988-3991.
    [16]
    WAGADARIKAR A, JOHN R, WILLETT R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51. doi: 10.1364/AO.47.000B44
    [17]
    CAO X, YUE T, LIN X, et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world[J]. IEEE Signal Processing Magazine, 2016, 33(5): 95-108. doi: 10.1109/MSP.2016.2582378
    [18]
    HE J J, WU J M, LU ZH, et al. . Compressive hyperspectral imaging for snapshot multi-channel fluorescence microscopy[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2018: CW2E. 5.
    [19]
    GEHM M E, JOHN R, BRADY D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027. doi: 10.1364/OE.15.014013
    [20]
    ZHAO ZH X, MENG Z Y, JU ZH Y, et al. . A compact dual-dispersion architecture for snapshot compressive spectral imaging[C]. Proceedings of 2021 Asia Communications and Photonics Conference, IEEE, 2021: 1-3.
    [21]
    RUEDA C H F, CALDERÓN G A R, FUENTES H A. Spectral selectivity in compressive spectral imaging based on grayscale coded apertures[C]. Proceedings of Symposium of Signals, Images and Artificial Vision, IEEE, 2013: 1-5.
    [22]
    DIAZ N, RUEDA H, ARGUELLO H. High-dynamic range compressive spectral imaging by adaptive filtering[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, IEEE, 2015: 89-93.
    [23]
    RUEDA H, ARGUELLO H, ARCE G R. Experimental demonstration of a colored coded aperture-based compressive spectral imaging system[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2014: CTu2C. 6.
    [24]
    ARGUELLO H, ARCE G R. Colored coded aperture design by concentration of measure in compressive spectral imaging[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1896-1908. doi: 10.1109/TIP.2014.2310125
    [25]
    RUEDA H, ARGUELLO H, ARCE G R. Compressive spectral imaging based on colored coded apertures[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2014: 7799-7803.
    [26]
    RUEDA H, ARGUELLO H, ARCE G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A, 2015, 32(1): 80-89. doi: 10.1364/JOSAA.32.000080
    [27]
    RUEDA H, ARGUELLO H, ARCE G R. Colored coded aperture compressive spectral imaging: design and experimentation[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 601-604.
    [28]
    RUEDA H, ARGUELLO H, ARCE G R. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays[J]. Applied Optics, 2016, 55(33): 9584-9593. doi: 10.1364/AO.55.009584
    [29]
    GALVIS L, MOJICA E, ARGUELLO H, et al. Shifting colored coded aperture design for spectral imaging[J]. Applied Optics, 2019, 58(7): B28-B38. doi: 10.1364/AO.58.000B28
    [30]
    PARADA-MAYORGA A, ARCE G R. Spectral super-resolution in colored coded aperture spectral imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(4): 440-455. doi: 10.1109/TCI.2016.2612943
    [31]
    RUEDA H, LAU D, ARCE G R. RGB detectors on compressive snapshot multi-spectral imagers[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 388-392.
    [32]
    CORREA C V, ARGUELLO H, ARCE G R. Compressive spectral imaging with colored-patterned detectors[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2014: 7789-7793.
    [33]
    CORREA C V, ARGUELLO H, ARCE G R. Snapshot colored compressive spectral imager[J]. Journal of the Optical Society of America A, 2015, 32(10): 1754-1763. doi: 10.1364/JOSAA.32.001754
    [34]
    MEJÍA-MELGAREJO Y H, VILLARREAL-DULCEY O P, ARGUELLO-FUENTES H. Adjustable spatial resolution of compressive spectral images sensed by multispectral filter array-based sensors[J]. Revista Facultad de Ingeniería, 2016(78): 89-98.
    [35]
    MARQUEZ M, MEZA P, ARGUELLO H, et al. Compressive spectral imaging via deformable mirror and colored-mosaic detector[J]. Optics Express, 2019, 27(13): 17795-17808. doi: 10.1364/OE.27.017795
    [36]
    MONAKHOVA K, YANNY K, WALLER L. Snapshot hyperspectral imaging using a random phase mask and spectral filter array[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2020: JF2F. 4.
    [37]
    WANG X, ZHANG Y H, MA X, et al. Compressive spectral imaging system based on liquid crystal tunable filter[J]. Optics Express, 2018, 26(19): 25226-25243. doi: 10.1364/OE.26.025226
    [38]
    XU C, XU T F, YAN G, et al. Super-resolution compressive spectral imaging via two-tone adaptive coding[J]. Photonics Research, 2020, 8(3): 395-411. doi: 10.1364/PRJ.377665
    [39]
    MA X, YUAN X, FU CH, et al. LED-based compressive spectral-temporal imaging[J]. Optics Express, 2021, 29(7): 10698-10715. doi: 10.1364/OE.419888
    [40]
    ARCE G R, BRADY D J, CARIN L, et al. Compressive coded aperture spectral imaging: an introduction[J]. IEEE Signal Processing Magazine, 2014, 31(1): 105-115. doi: 10.1109/MSP.2013.2278763
    [41]
    KITTLE D, CHOI K, WAGADARIKAR A, et al. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Applied Optics, 2010, 49(36): 6824-6833. doi: 10.1364/AO.49.006824
    [42]
    ARGUELLO H, ARCE G R. Code aperture optimization for spectrally agile compressive imaging[J]. Journal of the Optical Society of America A, 2011, 28(11): 2400-2413. doi: 10.1364/JOSAA.28.002400
    [43]
    KITTLE D S, MARKS D L, BRADY D J. Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager[J]. Optical Engineering, 2012, 51(7): 071403. doi: 10.1117/1.OE.51.7.071403
    [44]
    WU Y H, MIRZA I O, ARCE G R, et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 2011, 36(14): 2692-2694. doi: 10.1364/OL.36.002692
    [45]
    CORREA C V, HINOJOSA C A A, ARCE G R, et al. Multiple snapshot colored compressive spectral imager[J]. Optical Engineering, 2017, 56(4): 041309.
    [46]
    WANG L ZH, XIONG ZH W, GAO H H, et al. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858. doi: 10.1364/AO.54.000848
    [47]
    WANG L ZH, XIONG ZH W, SHI G M, et al. . Compressive hyperspectral imaging with complementary RGB measurements[C]. Proceedings of 2016 Visual Communications and Image Processing, IEEE, 2016: 1-4.
    [48]
    ŽÍDEK K, DENK O, HLUBUČEK J, et al. Compact and robust hyperspectral camera based on compressed sensing[J]. Proceedings of the SPIE, 2016, 10151: 101510N.
    [49]
    HLUBUČEK J, LUKEŠ J, VÁCLAVÍK J, et al. Enhancement of CASSI by a zero-order image employing a single detector[J]. Applied Optics, 2021, 60(5): 1463-1469. doi: 10.1364/AO.414402
    [50]
    SAITA Y, SHIMOYAMA D, TAKAHASHI R, et al. Single-shot compressive hyperspectral imaging with dispersed and undispersed light using a generally available grating[J]. Applied Optics, 2022, 61(5): 1106-1111. doi: 10.1364/AO.441568
    [51]
    HLUBUČEK J, LUKEŠ J, VÁCLAVÍK J, et al. Differential coded aperture single-snapshot spectral imaging[J]. Optics Letters, 2022, 47(9): 2342-2345. doi: 10.1364/OL.454729
    [52]
    JEON D S, CHOI I, KIM M H. Multisampling compressive video spectroscopy[J]. Computer Graphics Forum, 2016, 35(2): 467-477. doi: 10.1111/cgf.12847
    [53]
    BLANCO G, PEREZ J, MONSALVE J, et al. . Single snapshot system for compressive covariance matrix estimation for hyperspectral imaging via lenslet array[C]. Proceedings of the 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision, IEEE, 2021: 1-5.
    [54]
    MARQUEZ M, MONSALVE J, RUEDA H, et al. . Compressive spectral virtual multishot imager via lenslet array[C]. Proceedings of Optics and Photonics for Sensing the Environment, Optica Publishing Group, 2021: JW2A. 14.
    [55]
    AUGUST Y, VACHMAN C, RIVENSON Y, et al. . Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 2013, 52(10): D46-D54.
    [56]
    STERN A, YITZHAK A, FARBER V, et al. . Hyperspectral compressive imaging[C]. Proceedings of the 2013 12th Workshop on Information Optics, IEEE, 2013: 1-3.
    [57]
    LIN X, WETZSTEIN G, LIU Y B, et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 2014, 39(7): 2044-2047. doi: 10.1364/OL.39.002044
    [58]
    LIN X, LIU Y B, WU J M, et al. Spatial-spectral encoded compressive hyperspectral imaging[J]. ACM Transactions on Graphics, 2014, 33(6): 233.
    [59]
    WANG P, LI J, QI CH, et al. Input aperture restriction of the spatial spectral compressive spectral imager and a comprehensive solution for it[J]. Optics Express, 2021, 29(12): 17875-17889. doi: 10.1364/OE.422090
    [60]
    SALAZAR E, PARADA A, ARCE G R. Spatial super-resolution reconstruction via SSCSI compressive spectral imagers[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2018: CTu5D. 5.
    [61]
    SALAZAR E, PARADA-MAYORGA A, ARCE G R. Spectral zooming and resolution limits of spatial spectral compressive spectral imagers[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 165-179. doi: 10.1109/TCI.2019.2893596
    [62]
    STERN A, AUGUST I Y, OIKNINE Y. Compressive gigavoxel spectral imaging[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2016: CW5D. 1.
    [63]
    OIKNINE Y, AUGUST I, STERN A. Along-track scanning using a liquid crystal compressive hyperspectral imager[J]. Optics Express, 2016, 24(8): 8446-8457. doi: 10.1364/OE.24.008446
    [64]
    AUGUST I, OIKNINE Y, ABULEIL M, et al. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder[J]. Scientific Reports, 2016, 6: 23524. doi: 10.1038/srep23524
    [65]
    ZHANG M Q, WANG L ZH, ZHANG L, et al. High light efficiency snapshot spectral imaging via spatial multiplexing and spectral mixing[J]. Optics Express, 2020, 28(14): 19837-19850. doi: 10.1364/OE.393173
    [66]
    OIKNINE Y, AUGUST I, STERN A. Multi-aperture snapshot compressive hyperspectral camera[J]. Optics Letters, 2018, 43(20): 5042-5045. doi: 10.1364/OL.43.005042
    [67]
    GOLUB M A, AVERBUCH A, NATHAN M, et al. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser[J]. Applied Optics, 2016, 55(3): 432-443. doi: 10.1364/AO.55.000432
    [68]
    HAUSER J, GOLUB M A, AVERBUCH A, et al. Dual-camera snapshot spectral imaging with a pupil-domain optical diffuser and compressed sensing algorithms[J]. Applied Optics, 2020, 59(4): 1058-1070. doi: 10.1364/AO.380256
    [69]
    HAUSER J, AVERBUCH A, NATHAN M, et al. Design of binary-phase diffusers for a compressed sensing snapshot spectral imaging system with two cameras[J]. Applied Optics, 2020, 59(26): 7853-7864. doi: 10.1364/AO.395541
    [70]
    SAHOO S K, TANG D L, DANG C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 2017, 4(10): 1209-1213. doi: 10.1364/OPTICA.4.001209
    [71]
    WANG P, MENON R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics[J]. Optica, 2015, 2(11): 933-939. doi: 10.1364/OPTICA.2.000933
    [72]
    WANG P, MENON R. Computational multispectral video imaging [Invited][J]. Journal of the Optical Society of America A, 2018, 35(1): 189-199. doi: 10.1364/JOSAA.35.000189
    [73]
    DUARTE M F, BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504. doi: 10.1109/TIP.2011.2165289
    [74]
    CAIAFA C F, CICHOCKI A. Multidimensional compressed sensing and their applications[J]. WIREs Data Mining and Knowledge Discovery, 2013, 3(6): 355-380. doi: 10.1002/widm.1108
    [75]
    LU Y, WONG T T W, CHEN F, et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 2019, 122(19): 193904. doi: 10.1103/PhysRevLett.122.193904
    [76]
    YANG CH SH, CAO F Y, QI D L, et al. Hyperspectrally compressed ultrafast photography[J]. Physical Review Letters, 2020, 124(2): 023902. doi: 10.1103/PhysRevLett.124.023902
    [77]
    PARK J, FENG X H, LIANG R G, et al. Snapshot multidimensional photography through active optical mapping[J]. Nature Communications, 2020, 11(1): 5602. doi: 10.1038/s41467-020-19418-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(1799) PDF downloads(540) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return