Volume 16 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
AN Qi-chang, WU Xiao-xia, ZHANG Jing-xu, LI Hong-wen, ZHU Jia-kang, CAI Yu-qi. Sub region curvature sensing method for survey telescope with larger aperture[J]. Chinese Optics, 2023, 16(2): 358-365. doi: 10.37188/CO.2022-0117
Citation: AN Qi-chang, WU Xiao-xia, ZHANG Jing-xu, LI Hong-wen, ZHU Jia-kang, CAI Yu-qi. Sub region curvature sensing method for survey telescope with larger aperture[J]. Chinese Optics, 2023, 16(2): 358-365. doi: 10.37188/CO.2022-0117

Sub region curvature sensing method for survey telescope with larger aperture

doi: 10.37188/CO.2022-0117
Funds:  Supported by National Natural Science Foundation of China (No. 62005279, No. 12133009); the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020221); the Equipment Development Project of the Chinese Academy of Sciences (No. YJKYYQ20200057); Jilin Science and Technology Development Program (No. 20220402032GH)
More Information
  • Corresponding author: anjj@mail.ustc.edu.cn
  • Received Date: 10 Jun 2022
  • Rev Recd Date: 28 Jun 2022
  • Available Online: 12 Aug 2022
  • The large aperture sky survey telescope needs closed-loop error correction based on the feedback of its wavefront sensing system, so as to give it a better conform to its limit detection ability. In this paper, firstly, the basic theoretical expression of sub region curvature sensing is derived. Then, a joint simulation model is established. The process of sub region curvature sensing is simulated and analyzed by using a combination of optical design software and numerical calculation software. Finally, by setting up a desktop experiment, the cross-comparison of single- and multi-target curvature sensors is carried out to verify the correctness of the algorithm. Compared to the traditional active optical technology, the method proposed in this paper can improve the detection signal-to-noise ratio and sampling speed by expanding the available guide stars. For the standard wavefront, compared with the single guide star curvature sensor, the error is 0.02 operating wavelengths (RMS), and the error is less than 10%, which can effectively improve the correction ability of the active optical system.

     

  • loading
  • [1]
    GANSICKE B T, SCHREIBER M R, TOLOZA O, et al. Accretion of a giant planet onto a white dwarf star[J]. Nature, 2019, 576(7785): 61-64. doi: 10.1038/s41586-019-1789-8
    [2]
    EGDALL I M. Manufacture of a three-mirror wide-field optical system[J]. Optical Engineering, 1985, 24(2): 242285. doi: 10.1117/12.7973470
    [3]
    SEBRING T A, DUNHAM E W, MILLIS R L, et al. The discovery channel telescope: a wide-field telescope in northern Arizona[J]. Proceedings of SPIE, 2004, 5489: 658-666. doi: 10.1117/12.551720
    [4]
    ROODMAN A, REIL K, DAVIS C. Wavefront sensing and the active optics system of the dark energy camera[J]. Proceedings of SPIE, 2014, 9145: 914516.
    [5]
    HOLZLÖHNER R, TAUBENBERGER S, RAKICH A P, et al. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model[J]. Proceedings of SPIE, 2016, 9906: 99066E.
    [6]
    GUNN J E, SIEGMUND W A, MANNERY E J, et al. The 2.5 m telescope of the Sloan digital sky survey[J]. The Astronomical Journal, 2006, 131(4): 2332-2359. doi: 10.1086/500975
    [7]
    WOODS D F, SHAH R Y, JOHNSON J A, et al. Space Surveillance Telescope: focus and alignment of a three mirror telescope[J]. Optical Engineering, 2013, 52(5): 053604. doi: 10.1117/1.OE.52.5.053604
    [8]
    HARBECK D R, BOROSON T, LESSER M, et al. The WIYN one degree imager 2014: performance of the partially populated focal plane and instrument upgrade path[J]. Proceedings of SPIE, 2014, 9147: 91470P.
    [9]
    PINIARD M, SORRENTE B, HUG G, et al. Melt pool monitoring in laser beam melting with two-wavelength holographic imaging[J]. Light:Advanced Manufacturing, 2022, 3(1): 11. doi: 10.37188/lam.2022.011
    [10]
    张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182

    ZHANG T Y, WANG G, ZHANG X, et al. Statica berration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese) doi: 10.37188/CO.2021-0182
    [11]
    GENG Z CH, TONG ZH, JIANG X Q. Review of geometric error measurement and compensation techniques of ultra-precision machine tools[J]. Light:Advanced Manufacturing, 2021, 2(2): 14.
    [12]
    SU R, LEACH R. Physics-based virtual coherence scanning interferometer for surface measurement[J]. Light:Advanced Manufacturing, 2021, 2(2): 9.
    [13]
    王丰璞, 李新南, 徐晨, 等. 大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计[J]. 中国光学,2021,14(5):1184-1193. doi: 10.37188/CO.2020-0218

    WANG F P, LI X N, XU CH, et al. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 2021, 14(5): 1184-1193. (in Chinese) doi: 10.37188/CO.2020-0218
    [14]
    张磊, 吴金灵, 刘仁虎, 等. 光学自由曲面自适应干涉检测研究新进展[J]. 中国光学,2021,14(2):227-244. doi: 10.37188/CO.2020-0126

    ZHANG L, WU J L, LIU R H, et al. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. (in Chinese) doi: 10.37188/CO.2020-0126
    [15]
    陈波, 杨靖, 李新阳, 等. 波前曲率传感自适应光学的模式型控制技术[J]. 光学学报,2016,36(2):0201002. doi: 10.3788/AOS201636.0201002

    CHEN B, YANG J, LI X Y, et al. Modal control technique of adaptive optics with wavefront curvature sensing[J]. Acta Optica Sinica, 2016, 36(2): 0201002. (in Chinese) doi: 10.3788/AOS201636.0201002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(456) PDF downloads(330) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return