Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
AN Qi-chang, JIANG Xi-wen, LI Hong-wen, TANG Jing. Detection of large aperture flat mirror based on the differential optics transfer function method[J]. Chinese Optics, 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122
Citation: AN Qi-chang, JIANG Xi-wen, LI Hong-wen, TANG Jing. Detection of large aperture flat mirror based on the differential optics transfer function method[J]. Chinese Optics, 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122

Detection of large aperture flat mirror based on the differential optics transfer function method

Funds:  Supported by the National Natural Science Foundation of China (No. 62005279); the Youth Innovation Promotion Association of CAS (No. 2020221); the Equipment Development Project of the Chinese Academy of Sciences (No. YJKYYQ20200057); Jilin Science and Technology Development Program (No. 20220402032GH)
  • Received Date: 13 Jun 2022
  • Rev Recd Date: 15 Jul 2022
  • Available Online: 12 Aug 2022
  • In order to realize the in-situ detection of large aperture plane mirrors, wavefront detection is achieved by a combination of the Ritchey-Common method and holographic detection through the differential transfer function, combined with the actual Ritchey-Common detection architecture, and through the occlusion code of the pupil. Firstly, the principle of large aperture plane mirror detection based on differential transfer function method is derived, and the existing large aperture wavefront is compared with the reconstructed wavefront. Finally, the detection light path is built by using deformable mirrors. The correlation between the surface shape obtained by this method and the input surface shape is not less than 70%. This paper is of great significance to the fundamental cosmological propositions such as the detection of the "first light" of the universe and the "one black, two dark and three origins".

     

  • loading
  • [1]
    CUI X Q, ZHU Y T, LIANG M, et al. Introduction on Chinese 12m optical/infrared telescope (LOT)[J]. Proceedings of SPIE, 2018, 10700: 107001P.
    [2]
    BOUCHEZ A H, ANGELI G Z, ASHBY D S, et al. An overview and status of GMT active and adaptive optics[J]. Proceedings of SPIE, 2018, 10703: 107030W.
    [3]
    KORKIAKOSKI V, KELLER C U, DOELMAN N, et al. . High-order wavefront correction with a spatial light modulator: calibrations with dOTF method[C]. Proceedings of Adaptive Optics: Methods, Analysis and Applications 2013, Optica Publishing Group, 2013.
    [4]
    RODACK A T, KNIGHT J M, CODONA J L, et al. Adaptive optics self-calibration using differential OTF (dOTF)[J]. Proceedings of SPIE, 2015, 9605: 96052B. doi: 10.1117/12.2189583
    [5]
    KIM D W, OH C J, LOWMAN A, et al. Manufacturing of super-polished large aspheric/freeform optics[J]. Proceedings of SPIE, 2016, 9912: 99120F.
    [6]
    STUHLINGER T W. Subaperture optical testing: experimental verification[J]. Proceedings of SPIE, 1986, 656: 118-127. doi: 10.1117/12.938467
    [7]
    CHEN SH Y, DAI Y F, LI SH Y, et al. Error reductions for stitching test of large optical flats[J]. Optics &Laser Technology, 2012, 44(5): 1543-1550.
    [8]
    KIM C J. Polynomial fit of subaperture interferograms[J]. Proceedings of SPIE, 1983, 351: 28-41. doi: 10.1117/12.933909
    [9]
    TROLINGER J D. The language of holography[J]. Light:Advanced Manufacturing, 2021, 2(4): 473-481.
    [10]
    ZHANG J W, DAI S Q, MA CH J, et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing[J]. Light:Advanced Manufacturing, 2021, 2(3): 333-349.
    [11]
    FRATZ M, SEYLER T, BERTZ A, et al. Digital holography in production: an overview[J]. Light:Advanced Manufacturing, 2021, 2(3): 283-295.
    [12]
    BONNET H, BIANCAT-MARCHET F, DIMMLER M, et al. Adaptive optics at the ESO ELT[J]. Proceedings of SPIE, 2018, 10703: 1070310.
    [13]
    WOLFE C R, DOWNIE J D, LAWSON J K. Measuring the spatial frequency transfer function of phase-measuring interferometers for laser optics[J]. Proceedings of SPIE, 1996, 2870: 553-557. doi: 10.1117/12.259943
    [14]
    PARKS R E. Optical surface specification using the structure function[C]. Proceedings of Optical Fabrication and Testing 2010, Optica Publishing Group, 2010: OWE3.
    [15]
    SEO B J, NISSLY C, ANGELI G, et al. Analysis of normalized point source sensitivity as a performance metric for large telescopes[J]. Applied Optics, 2009, 48(31): 5997-6007. doi: 10.1364/AO.48.005997
    [16]
    STOKES A J, DUNCAN B D, DIERKING M P, et al. Improving mid-frequency contrast in sparse aperture optical imaging systems based upon the Golay-9 array[J]. Optics Express, 2010, 18(5): 4417-4427. doi: 10.1364/OE.18.004417
    [17]
    孔小辉, 樊学武, 马臻, 等. 大口径平面镜的计算机辅助瑞奇-康芒检验[J]. 应用光学,2010,31(6):984-988. doi: 10.3969/j.issn.1002-2082.2010.06.023

    KONG X H, FAN X W, MA ZH, et al. Computer added Ritchey-Common test for large flat mirror measurement[J]. Journal of Applied Optics, 2010, 31(6): 984-988. (in Chinese) doi: 10.3969/j.issn.1002-2082.2010.06.023
    [18]
    ZHU SH, ZHANG X H. Eliminating alignment error and analyzing Ritchey angle accuracy in Ritchey-Common test[J]. Optics Communications, 2013, 311: 368-374. doi: 10.1016/j.optcom.2013.08.024
    [19]
    刘一鸣, 李金鹏, 陈磊, 等. 采用单位激励影响矩阵数值计算的瑞奇-康芒检测技术[J]. 光学 精密工程,2018,26(4):771-777. doi: 10.3788/OPE.20182604.0771

    LIU Y M, LI J P, CHEN L, et al. Ritchey-Common interferometry using unit-excitation influence matrix's numerical calculation method[J]. Optics and Precision Engineering, 2018, 26(4): 771-777. (in Chinese) doi: 10.3788/OPE.20182604.0771
    [20]
    白晓泉, 郭良, 马宏财, 等. 离轴三反望远镜轴向与横向失调量像差耦合特性[J]. 中国光学(中英文),2022,15(4):747-760. doi: 10.37188/CO.2021-0164

    BAI X Q, GUO L, MA H C, et al. Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes[J]. Chinese Optics, 2022, 15(4): 747-760. (in Chinese) doi: 10.37188/CO.2021-0164
    [21]
    冯维, 徐仕楠, 王恒辉, 等. 逐像素调制的高反光表面三维测量方法[J]. 中国光学,2022,15(3):488-497. doi: 10.37188/CO.2021-0220

    FENG W, XU SH N, WANG H H, et al. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. (in Chinese) doi: 10.37188/CO.2021-0220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(634) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return