Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
TIAN Si-cong, TONG Cun-zhu, WANG Li-jun, BIMBERG Dieter. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. doi: 10.37188/CO.2022-0136
Citation: TIAN Si-cong, TONG Cun-zhu, WANG Li-jun, BIMBERG Dieter. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. doi: 10.37188/CO.2022-0136

Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP

doi: 10.37188/CO.2022-0136
Funds:  Supported by National Key R&D Program of China (No. 2021YFB2801000, No. 2018YFB2201000); National Natural Science Foundation of China (No. 61774156, No. 62174159, No. 62061136010); Youth Innovation Promotion Association, CAS (No. 2018249); Sino-German Center for Research Promotion Joint Mobility Program of DFG and NSFC (No. M0386); International Cooperation Project of Jilin Province (No. 20210402055GH).
More Information
  • High-speed vertical-cavity surface-emitting laser (VCSEL) is one of the main light sources for optical communication. Driven by the rapid growth of data traffic, the high-speed VCSEL is developing towards larger bandwidth and higher bit rate. By optimizing the epitaxy design and the growth of VCSELs, the design and the fabrication of VCSELs, and the high-frequency characterization techniques, much remarkable progress of high-speed VCSELs with different wavelengths have been achieved in modulation bandwidth, transmission rate, mode, power consumption in Changchun Institute of Optics, Fine Machanics and Physics (CIOMP). The research progress of high-speed VCSELs includes: high-speed single-mode 940 nm VCSEL with 27.65 GHz modulation bandwidth and 53 Gbit/s transmission rate; 200 Gbit/s optical link based on 850 nm, 880 nm, 910 nm and 940 nm high-speed VCSELs via wavelength division multiplexing; ultra-low power consumption as low as 100 fJ/bit of high-speed VCSEL via optimization of photon lifetime; 1030 nm high-speed VCSEL with 25 GHz modulation bandwidth; 1550 nm high-speed VCSEL with 37 Gbit/s transmission rate. The developed high-speed VCSELs have important application prospects in optical communication.

     

  • loading
  • [1]
    Global Internet Growth and Trends (Source: Cisco VNI Global IP Traffic Forecast, 2017-2022)[EB/OL]. https://cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf.
    [2]
    TIAN S C, AHAMED M, LARISCH G, et al. Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems[J]. Japanese Journal of Applied Physics, 2022, 61(SK): SK0801. doi: 10.35848/1347-4065/ac65d9
    [3]
    TATUM J A, LANDRY G D, GAZULA D, et al. . VCSEL-based optical transceivers for future data center applications[C]. 2018 Optical Fiber Communications Conference and Exposition, IEEE, 2018: 1-3.
    [4]
    FENG M, WU C H, HOLONYAK N. Oxide-confined VCSELs for high-speed optical interconnects[J]. IEEE Journal of Quantum Electronics, 2018, 54(3): 2400115.
    [5]
    HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/s[J]. Electronics Letters, 2015, 51(14): 1096-1098. doi: 10.1049/el.2015.0785
    [6]
    CHENG C L, LEDENTSOV N, KHAN Z, et al. Ultrafast Zn-diffusion and oxide-relief 940 nm vertical-cavity surface-emitting lasers under high-temperature operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1700507.
    [7]
    HAGHIGHI N, LARISCH G, ROSALES R, et al. . 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs[C]. 2018 IEEE International Semiconductor Laser Conference, IEEE, 2018: 1-2.
    [8]
    SIMPANEN E, GUSTAVSSON J S, HAGLUND E, et al. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate[J]. Electronics Letters, 2017, 53(13): 869-871. doi: 10.1049/el.2017.1165
    [9]
    KUCHTA D M, RYLYAKOV A V, DOANY F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J]. IEEE Photonics Technology Letters, 2015, 27(6): 577-580. doi: 10.1109/LPT.2014.2385671
    [10]
    杨卓凯, 田思聪, LARISCH G, 等. 基于PAM4调制的高速垂直腔面发射激光器研究进展[J]. 发光学报,2020,41(4):399-413. doi: 10.3788/fgxb20204104.0399

    YANG ZH K, TIAN S C, LARISCH G, et al. High-speed vertical-cavity surface-emitting lasers based on PAM4 modulation[J]. Chinese Journal of Luminescence, 2020, 41(4): 399-413. (in Chinese) doi: 10.3788/fgxb20204104.0399
    [11]
    ZUO T J, ZHANG T T, ZHANG S, et al. . Single-lane 200-Gbps PAM-4 transmission for Datacenter Intra-Connections employing 850-nm VCSEL[C]. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications, IEEE, 2020: 1-3.
    [12]
    LARISCH G, ROSALES R, BIMBERG D. Energy-efficient 50+ Gb/s VCSELs for 200+ Gb/s optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1701105.
    [13]
    STEPNIAK G, LEWANDOWSKI A, KROPP J R, et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF[J]. Electronics Letters, 2016, 52(8): 633-635. doi: 10.1049/el.2015.4264
    [14]
    MOSER P, LOTT J A, WOLF P, et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J]. Electronics Letters, 2012, 48(20): 1292-1294. doi: 10.1049/el.2012.2944
    [15]
    刘安金. 单模直调垂直腔面发射激光器研究进展[J]. 中国激光,2020,47(7):0701005. doi: 10.3788/CJL202047.0701005

    LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese) doi: 10.3788/CJL202047.0701005
    [16]
    徐汉阳, 田思聪, 韩赛一, 等. 53 Gbit/s高速单模940 nm垂直腔面发射激光器[J]. 发光学报,2022,43(7):1114-1120.

    XU H Y, TIAN S C, HAN S Y, et al. 53 Gbit/s high speed single mode 940 nm vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(7): 1114-1120. (in Chinese)
    [17]
    WESTBERGH P, GUSTAVSSON J S, KÖGEL B, et al. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603-1613. doi: 10.1109/JSTQE.2011.2114642
    [18]
    HU SH, HE X Y, HE Y, et al. Impact of damping on high speed 850 nm VCSEL performance[J]. Journal of Semiconductors, 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006
    [19]
    LARISCH G, MOSER P, LOTT J A, et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2327-2330. doi: 10.1109/LPT.2016.2592985
    [20]
    LARISCH G, TIAN S C, BIMBERG D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates[J]. Optics Express, 2020, 28(13): 18931-18937. doi: 10.1364/OE.391781
    [21]
    KUCHTA D M. High-speed low-power short-reach optical interconnects for high-performance computing and servers[J]. Proceedings of SPIE, 2014, 9010: 901007.
    [22]
    LI M J. Novel optical fibers for data center applications[J]. Proceedings of SPIE, 2016, 9772: 977205.
    [23]
    韩赛一, 田思聪, 徐汉阳, 等. 高速1 550 nm垂直腔面发射激光器研究进展[J]. 发光学报,2022,43(5):736-744. doi: 10.37188/CJL.20220048

    HAN S Y, TIAN S C, XU H Y, et al. Research progress of high-speed 1 550 nm vertical cavity surface emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(5): 736-744. (in Chinese) doi: 10.37188/CJL.20220048
    [24]
    BABICHEV A V, KARACHINSKY L Y, NOVIKOV I I, et al. 6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application[J]. IEEE Journal of Quantum Electronics, 2017, 53(6): 2400808.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(1095) PDF downloads(375) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return