Volume 16 Issue 3
May  2023
Turn off MathJax
Article Contents
WANG Chong, YANG Jia-hao, ZHU Bing-li, HAN Jiang-hao, DANG Wen-bin. Short pulse laser drive technology in a distance-selective imaging system[J]. Chinese Optics, 2023, 16(3): 567-577. doi: 10.37188/CO.2022-0142
Citation: WANG Chong, YANG Jia-hao, ZHU Bing-li, HAN Jiang-hao, DANG Wen-bin. Short pulse laser drive technology in a distance-selective imaging system[J]. Chinese Optics, 2023, 16(3): 567-577. doi: 10.37188/CO.2022-0142

Short pulse laser drive technology in a distance-selective imaging system

doi: 10.37188/CO.2022-0142
Funds:  Supported by National Natural Science Foundation of China (No. 51709228); Natural Science Foundation of Shaanxi Province (No. 2020JM-578)
More Information
  • Corresponding author: Y1998jh@163.com
  • Received Date: 23 Jun 2022
  • Rev Recd Date: 14 Jul 2022
  • Available Online: 28 Sep 2022
  • In a distance-selected imaging system based on single-photon detection, a short-pulse laser is emitted and synchronization control between the transmitter and receiver is performed, and the detector operates in photon counting mode and integrates in time to complete the imaging. In order to obtain a short pulse laser that meets the system requirements while reducing the system’s size and cost, we propose to apply two types of narrow pulse generation circuits based on RF bipolar transistor and Step Recovery Diode (SRD) to single photon distance selective imaging systems. We introduce the principle and design method of both types and verify the system through simulation, physical fabrication and testing. The characteristics of the pulse generator and factors affecting its pulse width and amplitude are analyzed. The physical test results show that the transistor-based method can generate a narrow pulse with a rise time of 903.5 ps, a fall time of 946.1 ps, a pulse width of 824 ps, and an amplitude of 2.46 V; the SRD-based method can generate a narrow pulse with a rise time of 456.8 ps, a fall time of 458.3 ps, a pulse width of 1.5 ns, and an amplitude of 2.38 V; and the repetition frequency of both can reach 50 MHz. Both design methods can be used with external current-driven laser diodes to achieve excellent short pulse laser output.

     

  • loading
  • [1]
    STEINVALL O K, OLSSON H, BOLANDER G, et al. Gated viewing for target detection and target recognition[J]. Proceedings of SPIE, 1999, 3707: 432-448. doi: 10.1117/12.351364
    [2]
    INTEVAC. LIVAR Model 4000 Preliminary Specifications[M]. Santa Clara: INTEVAC, 2006.
    [3]
    OBZERV. 距离选通夜视技术[EB/OL]. http://www.obzerv.com/products/land-systems/argc-2400/

    OBZERV. Distance selective pass night vision technology [EB/OL]. http://www.obzerv.com/products/land-systems/argc-2400/ (in Chinese).
    [4]
    朱建春, 李欣, 朱威. 流动卫星激光测距系统的距离选通实现方法[J]. 红外与激光工程,2022,51(12):145-155.

    ZHU J CH, LI X, ZHU W. Implementation method of range-gating for mobile satellite laser ranging system[J]. Infrared and Laser Engineering, 2022, 51(12): 145-155. (in Chinese)
    [5]
    雷帆朴. 基于位敏阳极的单光子成像关键技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.

    LEI F P. Research on the key technology of single photon imaging based on position sensitive anode[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2019. (in Chinese)
    [6]
    HOLZMAN J F, VERMEULEN F E, ELEZZABI A Y. Recombination-independent photogeneration of ultrashort electrical pulses[J]. Applied Physics Letters, 2000, 76(2): 134-136. doi: 10.1063/1.125679
    [7]
    OH S, WENTZLOFF D D. A step recovery diode based UWB transmitter for low-cost impulse generation[C]. Proceedings of 2011 IEEE International Conference on Ultra-Wideband, IEEE, 2011.
    [8]
    陈彦超, 赵柏秦, 李伟. 用于纳秒级窄脉冲工作的大功率半导体激光器模块[J]. 光学 精密工程,2009,17(4):695-700.

    CHEN Y CH, ZHAO B Q, LI W. High peak power semiconductor laser module for producing nanosecond pulse[J]. Optics and Precision Engineering, 2009, 17(4): 695-700. (in Chinese)
    [9]
    王佳敏, 季艳慧, 梁志勇, 等. 532 nm皮秒脉冲激光对单晶硅的损伤特性研究[J]. 中国光学,2022,15(2):242-250. doi: 10.37188/CO.2021-0160

    WANG J M, JI Y H, LIANG ZH Y, et al. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. (in Chinese) doi: 10.37188/CO.2021-0160
    [10]
    UHRING W, ZINT C V, BARTRINGER J. A low-cost high-repetition-rate picosecond laser diode pulse generator[C]. Proceedings of the SPIE, 2004, 5452: 583-590.
    [11]
    刘军. 极窄脉冲合成与超快沿产生电路设计[D]. 成都: 电子科技大学, 2019.

    LIU J. The circuit design of the ultral-narrow pulse synthesis and ultra-fast edge generation[D]. Chengdu: University of Electronic Science and Technology, 2019. (in Chinese)
    [12]
    ZHU A F, SHENG F, ZHANG A X. An implementation of step recovery diode-based UWB pulse generator[C]. Proceedings of 2010 IEEE International Conference on Ultra-Wideband, IEEE, 2010: 1-4.
    [13]
    BINH P H, TRONG V D, RENUCCI P, et al. 100 ps Optical pulse generator using laser diodes for visible light communication applications[J]. Microwave and Optical Technology Letters, 2014, 56(1): 184-187. doi: 10.1002/mop.28074
    [14]
    LEE J S, NGUYEN C. Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(5): 208-210. doi: 10.1109/7260.923030
    [15]
    LEE J S, NGUYEN C. Uniplanar picosecond pulse generator using step-recovery diode[J]. Electronics Letters, 2001, 37(8): 504-506. doi: 10.1049/el:20010350
    [16]
    HAN J, NGUYEN C. A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing[J]. IEEE Microwave and Wireless Components Letters, 2002, 12(6): 206-208. doi: 10.1109/LMWC.2002.1009996
    [17]
    PROTIVA P, MRKVICA J, MACHÁČ J. A compact step recovery diode subnanosecond pulse generator[J]. Microwave and Optical Technology Letters, 2010, 52(2): 438-440. doi: 10.1002/mop.24945
    [18]
    李曦. 超宽带脉冲发生器的设计[D]. 成都: 成都理工大学, 2018.

    LI X. Design of the UWB narrow pulse generator[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese)
    [19]
    陈彦超, 冯永革, 张献兵. 用于半导体激光器的大电流纳秒级窄脉冲驱动电路[J]. 光学 精密工程,2014,22(11):3145-3151. doi: 10.3788/OPE.20142211.3145

    CHEN Y CH, FENG Y G, ZHANG X B. Large current nanosecond pulse generating circuit for driving semiconductor laser[J]. Optics and Precision Engineering, 2014, 22(11): 3145-3151. (in Chinese) doi: 10.3788/OPE.20142211.3145
    [20]
    李萌, 黄忠华, 沈磊. 阶跃恢复二极管参数对窄脉冲波形的影响研究[J]. 兵工学报,2017,38(8):1490-1497. doi: 10.3969/j.issn.1000-1093.2017.08.005

    LI M, HUANG ZH H, SHEN L. Effects of step recovery diode parameters on narrow pulse waveform[J]. Acta Armamentarii, 2017, 38(8): 1490-1497. (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.08.005
    [21]
    吴福培, 谢晓扬, 李昇平. 一种散热型发光二极管阵列结构光源设计方法[J]. 中国光学,2021,14(3):670-684. doi: 10.37188/CO.2020-0211

    WU F P, XIE X Y, LI SH P. A thermal dissipation design method for LED array structure illumination[J]. Chinese Journal of Optics, 2021, 14(3): 670-684. (in Chinese) doi: 10.37188/CO.2020-0211
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(365) PDF downloads(294) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return