Citation: | WANG Xin, LI Yu-fang, REN Hang, HAN Song-wei, LIU Li-gang, SUN Ming-chao, SONG Ce. Targeting technology based on aerial monocular camera[J]. Chinese Optics, 2023, 16(2): 305-317. doi: 10.37188/CO.2022-0147 |
In order to improve the autonomous detection ability of the airborne optronics pod of a UAV under special working conditions, this paper developed a targeting technology suitable for the airborne optronics pod in an actual engineering project, and realized the functional verification on the embedded GPU (Graphics Processing Unit, Jetson-TX2i platform model). Firstly, we proposed an improved SURF (Speeded Up Robust Features) algorithm and GPU-accelerated digital image processing scheme to detect and match the real-time features of two images acquired at different focal lengths. Secondly, geometric cross-ratio invariance was used to correct the position information of distorted feature points at image edges. Finally, we used the least square method to estimate the depth information of the target and combines the quaternion space model to determine the attitude information of the target to determine its position. Experimental results show that the improved SURF algorithm is superior to the classical SURF algorithm in feature matching accuracy and speed. If the corner characteristic position error is controlled within one pixel, the depth error is no more than 2% and the angle errors of azimuth, pitch and roll angles are less than 4°, 5° and 2°, respectively. This error meets the target positioning accuracy requirements of the airborne optronics pod. In addition, when processing a set of images (two frames) at 1080 P resolution, the processing time can be increased to 74 ms through GPU acceleration, which meets the real-time demand for data processing in the airborne optronics pod.
[1] |
张金隆, 吴珊, 龚业明. 中国智能机械制造评价及发展研究[J]. 中国机械工程,2020,31(4):451-458. doi: 10.3969/j.issn.1004-132X.2020.04.012
ZHANG J L, WU SH, GONG Y M. Research on evaluation and development of intelligent machinery manufacturing in China[J]. China Mechanical Engineering, 2020, 31(4): 451-458. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.04.012
|
[2] |
WEI M S, XING F, YOU ZH. A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images[J]. Light:Science &Applications, 2018, 7: 18006.
|
[3] |
YUAN X Y, JI M Q, WU J M, et al. A modular hierarchical array camera[J]. Light:Science &Applications, 2021, 10(1): 37.
|
[4] |
PINIES P, LUPTON T, SUKKARIEH S, et al. . Inertial aiding of inverse depth SLAM using a monocular camera[C]. IEEE International Conference on Robotics & Automation, IEEE, 2007: 2797-2802.
|
[5] |
张中, 黄俊杰, 汪明明. 一种基于实时视频的位姿估计方法: 中国, 112419409A[P]. 2021-02-26.
ZHANG ZH, HUANG J J, WANG M M. A pose estimation method based on real-time video: CN, 112419409A[P]. 2021-02-26. (in Chinese)
|
[6] |
丁国绅, 乔延利, 易维宁, 等. 基于光谱图像空间的改进SIFT特征提取与匹配[J]. 北京理工大学学报,2022,42(2):192-199.
DING G SH, QIAO Y L, YI W N, et al. Improved SIFT feature extraction and matching based on spectral image space[J]. Transactions of Beijing Institute of Technology, 2022, 42(2): 192-199. (in Chinese)
|
[7] |
LESHCHENKO V E, KESSEL A, JAHN O, et al. On-target temporal characterization of optical pulses at relativistic intensity[J]. Light:Science &Applications, 2019, 8: 96.
|
[8] |
左威健, 胡立华, 刘爱琴, 等. 基于动态拓展的特征匹配方法[J]. 计算机工程与设计,2022,43(3):778-785.
ZUO W J, HU L H, LIU A Q, et al. Feature matching method based on dynamic expansion[J]. Computer Engineering and Design, 2022, 43(3): 778-785. (in Chinese)
|
[9] |
ZHANG ZH Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
|
[10] |
ZHANG Y, DU SH Q, HIRAKAWA K. Deep-nanometer-scale terahertz spectroscopy using a transistor geometry with metal nanogap electrodes[J]. Light:Advanced Manufacturing, 2021, 2(4): 460-472.
|
[11] |
王月, 李阳, 金映谷, 等. 拼接图像的径向畸变矫正技术[J]. 大连民族大学学报,2021,23(3):228-231. doi: 10.3969/j.issn.1009-315X.2021.03.009
WANG Y, LI Y, JIN Y G, et al. Radial distortion correction technology of image mosaic[J]. Journal of Dalian Minzu University, 2021, 23(3): 228-231. (in Chinese) doi: 10.3969/j.issn.1009-315X.2021.03.009
|
[12] |
HAJANO S, NAZ B, TALPUR S. Area and feature based image registration using template matching and SURF algorithm[C]. INCCST'20 Second International Conference, 2021: 109-113.
|
[13] |
雒福佐. 基于小波分析与RANSAC匹配的雷达图像拼接研究[J]. 自动化与仪器仪表,2022(2):199-203,208.
LUO F Z. Research on radar image mosaic based on wavelet analysis[J]. Automation &Instrumentation, 2022(2): 199-203,208. (in Chinese)
|
[14] |
杨建柏, 赵建, 孙强. 基于交比不变性的投影仪标定[J]. 中国光学,2021,14(2):320-328. doi: 10.37188/CO.2020-0111
YANG J B, ZHAO J, SUN Q. Projector calibration based on cross ratio invariance[J]. Chinese Optics, 2021, 14(2): 320-328. (in Chinese) doi: 10.37188/CO.2020-0111
|
[15] |
LI Q, ZENG Y A, JIU ZH X, et al. Distortion correction of optical system based on neural network and automated generation of reference points[J]. Proceedings of SPIE, 2009, 7283: 72831R. doi: 10.1117/12.828680
|
[16] |
HARTLEY R, KANG S B. Parameter-free radial distortion correction with center of distortion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1309-1321. doi: 10.1109/TPAMI.2007.1147
|
[17] |
陈天择, 葛宝臻, 罗其俊. 重投影优化的自由双目相机位姿估计方法[J]. 中国光学,2021,14(6):1400-1409. doi: 10.37188/CO.2021-0105
CHEN T Z, GE B ZH, LUO Q J. Pose estimation for free binocular cameras based on reprojection error optimization[J]. Chinese Optics, 2021, 14(6): 1400-1409. (in Chinese) doi: 10.37188/CO.2021-0105
|
[18] |
杜明鑫, 闫钰锋, 张燃, 等. 基于透镜阵列的三维姿态角度测量[J]. 中国光学,2022,15(1):45-55.
DU M X, YAN Y F, ZHANG R, et al. 3D position angle measurement based on a lens array[J]. Chinese Optics, 2022, 15(1): 45-55. (in Chinese)
|