Citation: | JI Yu-jin, CHU Xue-ying, DONG Xu, LI Jin-hua. Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films[J]. Chinese Optics, 2023, 16(1): 202-213. doi: 10.37188/CO.2022-0152 |
In order to detect polarized ultraviolet light by visible optical elements, CsPbBr3 nanocrystal/metal wire-grid composited films were prepared. The stability of its fluorescence was improved by depositing Al2O3 passivation layer. The green fluorescence of polarization-sensitive perovskite nanocrystals film was obtained under ultraviolet exciting light. The results show that the crystal structure of the CsPbBr3 nanocrystals obtained by hot-injection method have a cubic crystal system structure with a square shape and an average size of about 39 nm. An obvious green fluorescence at about 530 nm were observed under ultraviolet light excitation of the nanocrystal colloidal solution. The fluorescence intensity of the CsPbBr3 nanocrystal/metal wire-grid composited film obtained by self-assembly changed periodically with the polarization direction of the excited light. The luminous polarization ratio is about 0.54. The fluorescence intensity of this composite film was enhanced when Al2O3 was deposited on its surface by atomic layer deposition technology. The polarization ratio of the passivated film can still reach 0.36. The above results show that the fluorescence stability and polarization of perovskite nanocrystals film can be optimized by the surface passivation and the introduction of metal wire-grids, respectively. The obtained ultraviolet polarization sensitive CsPbBr3 nanocrystals composited film exhibits important application value in the fields of ultraviolet polarization detection and liquid crystal display.
[1] |
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779
|
[2] |
QU J Y, WANG Y P, SUN J J, et al. Analysis of photoelectric characteristics of a light-damaged schottky perovskite detector[J]. Chinese Optics, 2022, 15(4): 668-674. (in Chinese) doi: 10.37188/CO.2021-0196
|
[3] |
ZHANG Y N, SIEGLER T D, THOMAS C J, et al. A “tips and tricks” practical guide to the synthesis of metal halide perovskite nanocrystals[J]. Chemistry of Materials, 2020, 32(13): 5410-5423. doi: 10.1021/acs.chemmater.0c01735
|
[4] |
CHIBA T, HOSHI K, PU Y J, et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment[J]. ACS Applied Materials &Interfaces, 2017, 9(21): 18054-18060.
|
[5] |
WANG Y, LI X M, SONG J ZH, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27(44): 7101-7108. doi: 10.1002/adma.201503573
|
[6] |
SURENDRAN A, YU X CH, BEGUM R, et al. All inorganic mixed halide perovskite nanocrystal-graphene hybrid photodetector: from ultrahigh gain to Photostability[J]. ACS Applied Materials &Interfaces, 2019, 11(30): 27064-27072.
|
[7] |
ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese) doi: 10.3788/co.20201301.0062
|
[8] |
WANG L, DONG Y, GAO S, et al. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. (in Chinese) doi: 10.3788/co.20191205.0993
|
[9] |
WANG B, LIU L J, LIU B, et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots[J]. Physica B:Condensed Matter, 2020, 599: 412488. doi: 10.1016/j.physb.2020.412488
|
[10] |
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310-350. doi: 10.1039/C8CS00740C
|
[11] |
SUN ZH G, WU Y, WEI CH T, et al. Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling[J]. Chinese Optics, 2021, 14(1): 77-86. (in Chinese) doi: 10.37188/CO.2020-0060
|
[12] |
LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angewandte Chemie International Edition, 2017, 56(36): 10696-10701. doi: 10.1002/anie.201703703
|
[13] |
YIN B, SADTLER B, BEREZIN M Y, et al. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition[J]. Chemical Communications, 2016, 52(74): 11127-11130. doi: 10.1039/C6CC05090E
|
[14] |
JING Y, CAO K, ZHOU B Z, et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals[J]. Chemistry of Materials, 2020, 32(24): 10653-10662. doi: 10.1021/acs.chemmater.0c03831
|
[15] |
XIANG Q Y, ZHOU B Z, CAO K, et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition[J]. Chemistry of Materials, 2018, 30(23): 8486-8494. doi: 10.1021/acs.chemmater.8b03096
|
[16] |
CHENG C Y, MAO M H. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition[J]. Journal of Applied Physics, 2016, 120(8): 083103. doi: 10.1063/1.4961425
|
[17] |
WANG D, WU D, DONG D, et al. Polarized emission from CsPbX3 perovskite quantum dots[J]. Nanoscale, 2016, 8(22): 11565-11570. doi: 10.1039/C6NR01915C
|
[18] |
ZHOU Q CH, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651
|
[19] |
JIANG J J. The modulation of fluorescence via metallic microstructured materials[D]. Nanjing: Nanjing University, 2015. (in Chinese)
|
[20] |
MOYEN E, KANWAT A, CHO S, et al. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices[J]. Nanoscale, 2018, 10(18): 8591-8599. doi: 10.1039/C8NR01396A
|
[21] |
LI J H, ZHAO D X, MENG X Q, et al. Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method[J]. The Journal of Physical Chemistry B, 2006, 110(30): 14685-14687. doi: 10.1021/jp061563l
|
[22] |
GÜNER T, TOPÇU G, SAVACI U, et al. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers[J]. Nanotechnology, 2018, 29(13): 135202. doi: 10.1088/1361-6528/aaaaef
|
[23] |
HAN Q, LV F Y, WANG H, et al. Investigation on polarization fluorescence properties of all-inorganic perovskite CsPbBr3 microrods[J]. Semiconductor Optoelectronics, 2019, 40(6): 810-814. (in Chinese)
|
[24] |
SHI ZH F, LI Y, LI S, et al. Polarized emission effect realized in CH3NH3PbI3 perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2017, 5(34): 8699-8706. doi: 10.1039/C7TC03104A
|