Citation: | YANG Ke-yuan, DENG Zhong-wen, CHEN Wen-jun, YAO Xin, SUN Hai-feng, SHEN Li-rong. Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm[J]. Chinese Optics, 2023, 16(3): 682-700. doi: 10.37188/CO.2022-0173 |
Aiming at the problem that the optical frequency scanning nonlinearity affects the phase extracting accuracy of the optical Frequency Scanning Interferometry (FSI) signal, and thus reduces the FSI ranging accuracy, a phase-extracting method based on the Complementary Ensemble Empirical Mode Decomposition and Hilbert Transform (CEEMD-HT) algorithm is proposed in this paper. Based on theoretical derivation and simulation analysis of the CEEMD-HT algorithm, the effectiveness of the algorithm in solving the phase of the non-stationary interference signal in scanning-frequency is verified by simulation. Further simulation experiments were implemented by using the real output optical frequency obtained with FSI ranging system as the simulation conditions. The simulation results showed that the CEEMD-HT algorithm significantly improved the phase extracting accuracy of the interference signal and the FSI ranging accuracy. Finally, the proposed interference signal phase-extracting method was verified via the experiment of the FSI ranging system. The results showed that the ranging repeatability of the measurement system based on the CEEMD-HT algorithm was 2.79 μm in the free space measurement range of 2 m. Compared with EMD-HT and direct measurement methods, the ranging repeatability was improved by 5.19 times and 8.28 times, respectively.
[1] |
LU CH, LIU G D, LIU B G, et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration[J]. Optics Express, 2016, 24(26): 30215-30224. doi: 10.1364/OE.24.030215
|
[2] |
SHI G, ZHANG F M, QU X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Optical Engineering, 2014, 53(12): 122402. doi: 10.1117/1.OE.53.12.122402
|
[3] |
SHI G, WANG W, ZHANG F M. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers[J]. Optics Communications, 2018, 411: 152-157. doi: 10.1016/j.optcom.2017.11.062
|
[4] |
WANG ZH Y, LIU ZH G, DENG ZH W, et al. Phase extraction of non-stationary interference signal in frequency scanning interferometry using complex shifted Morlet wavelets[J]. Optics Communications, 2018, 420: 26-33. doi: 10.1016/j.optcom.2018.03.032
|
[5] |
CHENG X R, LIU J CH, JIA L H, et al. Precision and repeatability improvement in frequency-modulated continuous-wave velocity measurement based on the splitting of beat frequency signals[J]. Optics Express, 2021, 29(18): 28582-28596. doi: 10.1364/OE.433637
|
[6] |
DALE J, HUGHES B, LANCASTER A J, et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells[J]. Optics Express, 2014, 22(20): 24869-24893. doi: 10.1364/OE.22.024869
|
[7] |
LIU G D, XU X K, LIU B G, et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement[J]. Optics Communications, 2017, 386: 57-64. doi: 10.1016/j.optcom.2016.10.052
|
[8] |
XU X K, LONG K, XU J X, et al. The method of dispersion cancellation based on the forward and reverse tuning of a laser frequency-modulated continuous wave system[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 243-247.
|
[9] |
WANG D F, YAO X, JIAO ZH K, et al. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. (in Chinese) doi: 10.37188/CO.2020-0098
|
[10] |
GONG H, LIU ZH G, ZHOU Y L, et al. Mode-hopping suppression of external cavity diode laser by mode matching[J]. Applied Optics, 2014, 53(4): 694-701. doi: 10.1364/AO.53.000694
|
[11] |
DENG ZH W, LIU ZH G, LI B, et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping[J]. Optical Review, 2015, 22(5): 724-730. doi: 10.1007/s10043-015-0134-1
|
[12] |
GONG H, LIU ZH G, ZHOU Y L, et al. Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching[J]. Applied Optics, 2014, 53(33): 7878-7884. doi: 10.1364/AO.53.007878
|
[13] |
YÜKSEL K, WUILPART M, MÉGRET P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Optics Express, 2009, 17(7): 5845-5851. doi: 10.1364/OE.17.005845
|
[14] |
AHN T J, LEE J Y, KIM D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 2005, 44(35): 7630-7634. doi: 10.1364/AO.44.007630
|
[15] |
ROOS P A, REIBEL R R, BERG T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692-3694. doi: 10.1364/OL.34.003692
|
[16] |
DENG W, LIU ZH G, DENG ZH W, et al. Extraction of interference phase in frequency-scanning interferometry based on empirical mode decomposition and Hilbert transform[J]. Applied Optics, 2018, 57(9): 2299-2305. doi: 10.1364/AO.57.002299
|
[17] |
BEDROSIAN E. A product theorem for Hilbert transforms[R]. Santa Monica: RAND Corporation, 1962.
|
[18] |
RILLING G, FLANDRIN P, GONÇALVES P. On empirical mode decomposition and its algorithms[C]. Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, IEEE, 2003: 8-11.
|
[19] |
WU ZH H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
|
[20] |
YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. doi: 10.1142/S1793536910000422
|