Volume 16 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHU Qin-yu, CHEN Mei-rui, LU Huan-jun, FAN Li-na, PENG Jian-tao, SUN Hui-juan, XU Guo-ding, MAO Hong-min, CAO Zhao-liang. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. doi: 10.37188/CO.2022-0176
Citation: ZHU Qin-yu, CHEN Mei-rui, LU Huan-jun, FAN Li-na, PENG Jian-tao, SUN Hui-juan, XU Guo-ding, MAO Hong-min, CAO Zhao-liang. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. doi: 10.37188/CO.2022-0176

Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor

Funds:  Supported by the Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Industry-University-Institute Cooperation Foundation of the Eighth Research Institute of China Aerospace Science and Technology Corporation (No. SAST2020-025); Academic Research Projects of Beijing Union University (No. ZK70202007); the Natural Science Foundation of Jiangsu Province (No. BK20220640); the Natural Science Foundation of Jiangsu Higher Education Institutions (No. 22KJB150011)
More Information
  • The diffraction effect of microlens array will affect the detection accuracy of Shack-Hartmann wavefront sensor. Based on Huygens-Fresnel diffraction theory, a two-dimensional microlens array diffraction model is established to simulate and analyze the two-dimensional diffraction spot array generated in the focal plane when the ideal parallel light is incident on the microlens array. First, the maximum centroid calculation error is determined by calculating the centroid error in the process of diffraction spot shifting by one pixel. Then the wavefront is reconstructed by using the modal method to obtain the wavefront detection error. The simulation results show that the maximum wavefront error caused by diffraction is 0.125 λ at 0.21 and 0.79 pixels offset, that is, when the wavefront deflection is 0.03° and 0.13°. Finally, an experiment is performed to verify the effectiveness of the error calculation method. This work provides a theoretical basis for the design of shack-Hartmann wavefront detector.

     

  • loading
  • [1]
    姜文汉, 鲜浩, 杨泽平, 等. 哈特曼波前传感器的应用[J]. 量子电子学报,1998,15(2):228-235.

    JIANG W H, XIAN H, YANG Z P, et al. Applications of shack-Hartmann wavefront sensor[J]. Chinese Journal of Quantum Electronics, 1998, 15(2): 228-235. (in Chinese)
    [2]
    ZAVALOVA V Y, KUDRYASHOV A V. Shack-Hartmann wavefront sensor for laser beam analyses[J]. Proceedings of SPIE, 2002, 4493: 277-284. doi: 10.1117/12.454723
    [3]
    程少园, 曹召良, 胡立发, 等. 用夏克-哈特曼探测器测量人眼波前像差[J]. 光学 精密工程,2010,18(5):1060-1067.

    CHENG SH Y, CAO ZH L, HU L F, et al. Measurement of wavefront aberrations of human eyes with Shack-Hartmann wavefront sensor[J]. Optics and Precision Engineering, 2010, 18(5): 1060-1067. (in Chinese)
    [4]
    OGANE H, AKIYAMA M, OYA S, et al. Atmospheric turbulence profiling with multi-aperture scintillation of a Shack–Hartmann sensor[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(4): 5778-5788. doi: 10.1093/mnras/stab105
    [5]
    XU L, WANG J, YAO K, et al. Application of the Gaussian modeling algorithm to a Shack–Hartmann wavefront sensor for daylight adaptive optics[J]. Optics Letters, 2021, 46(17): 4196-4199. doi: 10.1364/OL.434941
    [6]
    苏鹏程, 陈宇, 张家铭, 等. 基于六边形紧密拼接结构的仿生复眼系统设计[J]. 红外与激光工程,2021,50(4):20200338. doi: 10.3788/IRLA20200338

    SU P CH, CHEN Y, ZHANG J M, et al. Design of bionic compound eye system based on hexagonal closely spliced structure[J]. Infrared and Laser Engineering, 2021, 50(4): 20200338. (in Chinese) doi: 10.3788/IRLA20200338
    [7]
    程利群, 景文博, 王晓曼. 夏克-哈特曼波前传感器光斑质心探测方法比较与分析[J]. 长春理工大学学报(自然科学版),2014,37(3):23-26.

    CHENG L Q, JING W B, WANG X M. Comparison and analysis of shack-Hartmann wave-front sensor spot centroid detection methods[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(3): 23-26. (in Chinese)
    [8]
    PRIETO P M, VARGAS-MARTÍN F, GOELZ S, et al. Analysis of the performance of the Hartmann–Shack sensor in the human eye[J]. Journal of the Optical Society of America A, 2000, 17(8): 1388-1398. doi: 10.1364/JOSAA.17.001388
    [9]
    李晶, 巩岩, 呼新荣, 等. 哈特曼-夏克波前传感器的高精度质心探测方法[J]. 中国激光,2014,41(3):0316002. doi: 10.3788/CJL201441.0316002

    LI J, GONG Y, HU X R, et al. A high-precision centroid detecting method for Hartmann-shack wavefront sensor[J]. Chinese Journal of Lasers, 2014, 41(3): 0316002. (in Chinese) doi: 10.3788/CJL201441.0316002
    [10]
    师亚萍, 刘缠牢. 提高夏克-哈特曼波前传感器光斑质心的定位精度[J]. 激光与光电子学进展,2017,54(8):081201.

    SHI Y P, LIU CH L. Positioning accuracy improvement of spot centroid for shack-Hartmann wavefront sensor[J]. Laser &Optoelectronics Progress, 2017, 54(8): 081201. (in Chinese)
    [11]
    李旭旭, 李新阳, 王彩霞. 哈特曼传感器子孔径光斑的局部自适应阈值分割方法[J]. 光电工程,2018,45(10):170699.

    LI X X, LI X Y, WANG C X. Local adaptive threshold segmentation method for subapture spots of shack-Hartmann sensor[J]. Opto-Electronic Engineering, 2018, 45(10): 170699. (in Chinese)
    [12]
    BAIK S H, PARK S K, KIM C J, et al. A center detection algorithm for shack–Hartmann wavefront sensor[J]. Optics & Laser Technology, 2007, 39(2): 262-267.
    [13]
    RUFFIEUX P, SCHARF T, HERZIG H P, et al. On the chromatic aberration of microlenses[J]. Optics Express, 2006, 14(11): 4687-4694. doi: 10.1364/OE.14.004687
    [14]
    韩妍娜, 胡新奇, 董冰. 一种扩大夏克-哈特曼波前传感器动态范围的迭代外推法[J]. 光学学报,2020,40(16):1611004. doi: 10.3788/AOS202040.1611004

    HAN Y N, HU X Q, DONG B. Iterative extrapolation method to expand dynamic range of shack-Hartmann wavefront sensors[J]. Acta Optica Sinica, 2020, 40(16): 1611004. (in Chinese) doi: 10.3788/AOS202040.1611004
    [15]
    WANG K, XU K F. A review on wavefront reconstruction methods[C]. 2021 4th International Conference on Information Systems and Computer Aided Education, Association for Computing Machinery, 2021: 1528-1531.
    [16]
    PRIMOT J. Theoretical description of Shack–Hartmann wave-front sensor[J]. Optics Communications, 2003, 222(1-6): 81-92. doi: 10.1016/S0030-4018(03)01565-7
    [17]
    刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学,2021,14(4):831-850. doi: 10.37188/CO.2021-0014

    LIU Y T, CHEN Q K, TANG ZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi: 10.37188/CO.2021-0014
    [18]
    夏明亮. 高精度人眼像差哈特曼探测器的研制[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2011.

    XIA M L. The development of high precision Hartmann wavefront detector for eye aberration[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2011. (in Chinese)
    [19]
    JOHNSON T P, SASIAN J. Zernike monomials in wide field of view optical designs[J]. Applied Optics, 2020, 59(22): G146-G153. doi: 10.1364/AO.392305
    [20]
    LAKSHMINARAYANAN V, FLECK A. Zernike polynomials: a guide[J]. Journal of Modern Optics, 2011, 58(7): 545-561. doi: 10.1080/09500340.2011.554896
    [21]
    李建聪, 林宏安, 罗佳雄, 等. 空间引力波探测望远镜光学系统设计[J]. 中国光学,2022,15(4):761-769. doi: 10.37188/CO.2022-0018

    LI J C, LIN H A, LUO J X, et al. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. (in Chinese) doi: 10.37188/CO.2022-0018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(1202) PDF downloads(332) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return