Volume 16 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
YAO Jian-quan, LI Ji-tao, ZHANG Ya-ting, LI Jie, YUE Zhen, XU Hang, YANG Fan. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 2023, 16(1): 1-23. doi: 10.37188/CO.2022-0189
Citation: YAO Jian-quan, LI Ji-tao, ZHANG Ya-ting, LI Jie, YUE Zhen, XU Hang, YANG Fan. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 2023, 16(1): 1-23. doi: 10.37188/CO.2022-0189

Bound states in continuum in periodic optical systems

Funds:  Supported by National Key Research and Development Program of China (No. 2021YFB2800703, No. 2017YFA0700202, No. 2007CB310403); National Natural Science Foundation of China (No. 61735010)
More Information
  • Corresponding author: jqyao@tju.edu.cn
  • Received Date: 29 Aug 2022
  • Rev Recd Date: 28 Sep 2022
  • Available Online: 10 Nov 2022
  • Periodic optical systems, such as photonic crystals and optical metamaterials, can localize high-density electromagnetic field energy at subwavelength scales and obtain extremely small mode volumes, so they have great application potential in the field of light manipulation. In recent years, a strong interaction between light and matter in periodic optical systems has been discovered, which is called Bound States in Continuum (BIC). Optics BICs are special electromagnetic eigenstates whose frequencies lie in the radiation continuum but are completely localized, and have shown interesting physics and rich application scenarios. This paper systematically reviews the classification and theory of BICs in periodic optical systems, and summarizes their basic physical properties and the latest application development. BICs in periodic optical systems are injecting new impetus into the fields of integrated optics, information optics, bio-optics, topological optics, and nonlinear optics.

     

  • loading
  • [1]
    VON NEUMANN J, WIGNER E P. Uber merkwürdige diskrete eigenwerte[J]. Physikalische Zeitschrift, 1929, 30: 465-467.
    [2]
    VOO K K. Trapped electromagnetic modes in forked transmission lines[J]. Wave Motion, 2008, 45(6): 795-803. doi: 10.1016/j.wavemoti.2008.02.001
    [3]
    CALLAN M, LINTON C M, EVANS D V. Trapped modes in two-dimensional waveguides[J]. Journal of Fluid Mechanics, 1991, 229: 51-64. doi: 10.1017/S0022112091002938
    [4]
    COBELLI P J, PAGNEUX V, MAUREL A, et al. Experimental observation of trapped modes in a water wave channel[J]. Europhysics Letters, 2009, 88(2): 20006. doi: 10.1209/0295-5075/88/20006
    [5]
    COBELLI P J, PAGNEUX V, MAUREL A, et al. Experimental study on water-wave trapped modes[J]. Journal of Fluid Mechanics, 2011, 666: 445-476. doi: 10.1017/S0022112010004222
    [6]
    LINTON C M, MCIVER P. Embedded trapped modes in water waves and acoustics[J]. Wave Motion, 2007, 45(1-2): 16-29. doi: 10.1016/j.wavemoti.2007.04.009
    [7]
    HEIN S, KOCH W, NANNEN L. Trapped modes and Fano resonances in two-dimensional acoustical duct–cavity systems[J]. Journal of Fluid Mechanics, 2012, 692: 257-287. doi: 10.1017/jfm.2011.509
    [8]
    LYAPINA A A, MAKSIMOV D N, PILIPCHUK A S, et al. Bound states in the continuum in open acoustic resonators[J]. Journal of Fluid Mechanics, 2015, 780: 370-387. doi: 10.1017/jfm.2015.480
    [9]
    ALSHITS V I, DARINSKII A N, SHUVALOV A L. Elastic waves in infinite and semi-infinite anisotropic media[J]. Physica Scripta, 1992, 1992(T44): 85-93.
    [10]
    EVERY A G. Guided elastic waves at a periodic array of thin coplanar cavities in a solid[J]. Physical Review B, 2008, 78(17): 174104. doi: 10.1103/PhysRevB.78.174104
    [11]
    BULGAKOV E N, SADREEV A F. Bound states in the continuum in photonic waveguides inspired by defects[J]. Physical Review B, 2008, 78(7): 075105. doi: 10.1103/PhysRevB.78.075105
    [12]
    MARINICA D C, BORISOV A G, SHABANOV S V. Bound States in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18): 183902. doi: 10.1103/PhysRevLett.100.183902
    [13]
    LONGHI S. Optical analog of population trapping in the continuum: classical and quantum interference effects[J]. Physical Review A, 2009, 79(2): 023811. doi: 10.1103/PhysRevA.79.023811
    [14]
    PLOTNIK Y, PELEG O, DREISOW F, et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 2011, 107(18): 183901. doi: 10.1103/PhysRevLett.107.183901
    [15]
    LEE J, ZHEN B, CHUA S L, et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs[J]. Physical Review Letters, 2012, 109(6): 067401. doi: 10.1103/PhysRevLett.109.067401
    [16]
    WEIMANN S, XU Y, KEIL R, et al. Compact surface Fano states embedded in the continuum of waveguide arrays[J]. Physical Review Letters, 2013, 111(24): 240403. doi: 10.1103/PhysRevLett.111.240403
    [17]
    BULGAKOV E N, SADREEV A F. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide[J]. Optics Letters, 2014, 39(17): 5212-5215. doi: 10.1364/OL.39.005212
    [18]
    YOON J W, SONG S H, MAGNUSSON R. Critical field enhancement of asymptotic optical bound states in the continuum[J]. Scientific Reports, 2015, 5: 18301. doi: 10.1038/srep18301
    [19]
    ZHANG M D, ZHANG X D. Ultrasensitive optical absorption in graphene based on bound states in the continuum[J]. Scientific Reports, 2015, 5: 8266. doi: 10.1038/srep08266
    [20]
    BULGAKOV E N, SADREEV A F. Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres[J]. Physical Review A, 2016, 94(3): 033856. doi: 10.1103/PhysRevA.94.033856
    [21]
    LI L SH, YIN H CH. Bound States in the Continuum in double layer structures[J]. Scientific Reports, 2016, 6: 26988. doi: 10.1038/srep26988
    [22]
    NI L F, WANG ZH X, PENG CH, et al. Tunable optical bound states in the continuum beyond in-plane symmetry protection[J]. Physical Review B, 2016, 94(24): 245148. doi: 10.1103/PhysRevB.94.245148
    [23]
    GOMIS-BRESCO J, ARTIGAS D, TORNER L. Anisotropy-induced photonic bound states in the continuum[J]. Nature Photonics, 2017, 11(4): 232-236. doi: 10.1038/nphoton.2017.31
    [24]
    SADREEV A F, PILIPCHUK A S, LYAPINA A A. Tuning of Fano resonances by rotation of continuum: wave faucet[J]. Europhysics Letters, 2017, 117(5): 50011. doi: 10.1209/0295-5075/117/50011
    [25]
    SADRIEVA Z F, SINEV I S, KOSHELEV K L, et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness[J]. ACS Photonics, 2017, 4(4): 723-727. doi: 10.1021/acsphotonics.6b00860
    [26]
    BULGAKOV E N, MAKSIMOV D N, SEMINA P N, et al. Propagating bound states in the continuum in dielectric gratings[J]. Journal of the Optical Society of America B, 2018, 35(6): 1218-1222. doi: 10.1364/JOSAB.35.001218
    [27]
    KOSHELEV K L, SYCHEV S K, SADRIEVA Z F, et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum[J]. Physical Review B, 2018, 98(16): 161113(R). doi: 10.1103/PhysRevB.98.161113
    [28]
    LIU M K, CHOI D Y. Extreme Huygens' metasurfaces based on quasi-bound states in the continuum[J]. Nano Letters, 2018, 18(12): 8062-8069. doi: 10.1021/acs.nanolett.8b04774
    [29]
    MINKOV M, WILLIAMSON I A D, XIAO M, et al. Zero-index bound states in the continuum[J]. Physical Review Letters, 2018, 121(26): 263901. doi: 10.1103/PhysRevLett.121.263901
    [30]
    LI SH Y, ZHOU CH B, LIU T T, et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J]. Physical Review A, 2019, 100(6): 063803. doi: 10.1103/PhysRevA.100.063803
    [31]
    YU Z J, SUN X K. Acousto-optic modulation of photonic bound state in the continuum[J]. Light:Science &Applications, 2020, 9: 1.
    [32]
    YU Z J, TONG Y Y, TSANG H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum[J]. Nature Communications, 2020, 11(1): 2602. doi: 10.1038/s41467-020-15358-x
    [33]
    LI ZH, LIU W W, GENG G ZH, et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 2020, 30(23): 1910744. doi: 10.1002/adfm.201910744
    [34]
    LI J, LI J T, ZHENG CH L, et al. Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon[J]. Science China Physics,Mechanics &Astronomy, 2021, 65(1): 214211.
    [35]
    LI J, ZHENG CH L, WANG G C, et al. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J]. Photonics Research, 2021, 9(4): 567-573. doi: 10.1364/PRJ.415547
    [36]
    YUE ZH, LIU J Y, LI J T, et al. Multifunctional terahertz metasurfaces for polarization transformation and wavefront manipulation[J]. Nanoscale, 2021, 13(34): 14490-14496. doi: 10.1039/D1NR03388C
    [37]
    柴若衡, 刘文玮, 程化, 等. 人工光学微纳结构中的连续体束缚态: 原理、发展及应用[J]. 光学学报,2021,41(1):0123001. doi: 10.3788/AOS202141.0123001

    CHAI R H, LIU W W, CHENG H, et al. Bound states of continuum in optical artificial micro-nanostructures: fundamentals, developments and applications[J]. Acta Optica Sinica, 2021, 41(1): 0123001. (in Chinese) doi: 10.3788/AOS202141.0123001
    [38]
    LI J T, WANG G C, YUE ZH, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electronic Advances, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062
    [39]
    LI J T, YUE ZH, LI J, et al. . Wavefront-controllable all-silicon terahertz meta-polarizer[J]. Science China Materials, 2022,doi: 10.1007/s40843-022-2126-0.
    [40]
    LI J T, YUE ZH, LI J, et al. . Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces[J]. Science China Information Sciences, 2023,doi: 10.1007/s11432-022-3499-4.
    [41]
    YUE ZH, LI J T, LI J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electronic Science, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014
    [42]
    YUE ZH, LI J T, LIU J Y, et al. Versatile polarization conversion and wavefront shaping based on fully phase‐modulated metasurface with complex amplitude modulation[J]. Advanced Optical Materials, 2022, 10(16): 2200733. doi: 10.1002/adom.202200733
    [43]
    YUE ZH, LIU J Y, LI J T, et al. Vector beam generation based on spin-decoupling metasurface zone plate[J]. Applied Physics Letters, 2022, 120(19): 191704. doi: 10.1063/5.0093708
    [44]
    ZHENG CH L, LI J, LIU J Y, et al. Creating longitudinally varying vector vortex beams with an all‐dielectric metasurface[J]. Laser &Photonics Reviews, 2022, 16(10): 2200236.
    [45]
    ZHENG CH L, LI J, YUE ZH, et al. All‐dielectric trifunctional metasurface capable of independent amplitude and phase modulation[J]. Laser &Photonics Reviews, 2022, 16(7): 2200051.
    [46]
    KUPRIIANOV A S, XU Y, SAYANSKIY A, et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014024. doi: 10.1103/PhysRevApplied.12.014024
    [47]
    ROMANO S, ZITO G, LARA YÉPEZ S N, et al. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor[J]. Optics Express, 2019, 27(13): 18776-18786. doi: 10.1364/OE.27.018776
    [48]
    ABUJETAS D R, BARREDA Á, MORENO F, et al. High‐Q transparency band in all‐dielectric metasurfaces induced by a quasi bound state in the continuum[J]. Laser &Photonics Reviews, 2021, 15(1): 2000263.
    [49]
    MURAI S, ABUJETAS D R, CASTELLANOS G W, et al. Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles[J]. ACS Photonics, 2020, 7(8): 2204-2210. doi: 10.1021/acsphotonics.0c00723
    [50]
    OVERVIG A C, MALEK S C, CARTER M J, et al. Selection rules for quasibound states in the continuum[J]. Physical Review B, 2020, 102(3): 035434. doi: 10.1103/PhysRevB.102.035434
    [51]
    WANG X, DUAN J Y, CHEN W Y, et al. Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance[J]. Physical Review B, 2020, 102(15): 155432. doi: 10.1103/PhysRevB.102.155432
    [52]
    XIAO SH Y, LIU T T, WANG X, et al. Tailoring the absorption bandwidth of graphene at critical coupling[J]. Physical Review B, 2020, 102(8): 085410. doi: 10.1103/PhysRevB.102.085410
    [53]
    VAN HOOF N J J, ABUJETAS D R, TER HUURNE S E T, et al. Unveiling the symmetry protection of bound states in the continuum with terahertz near-field imaging[J]. ACS Photonics, 2021, 8(10): 3010-3016. doi: 10.1021/acsphotonics.1c00937
    [54]
    ABUJETAS D R, VAN HOOF N, TER HUURNE S, et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces[J]. Optica, 2019, 6(8): 996-1001. doi: 10.1364/OPTICA.6.000996
    [55]
    BOGDANOV A A, KOSHELEV K L, KAPITANOVA P V, et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001.
    [56]
    CONG L Q, SINGH R. Symmetry‐protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 2019, 7(13): 1900383.
    [57]
    KYAW C, YAHIAOUI R, BURROW J A, et al. Polarization-selective modulation of supercavity resonances originating from bound states in the continuum[J]. Communications Physics, 2020, 3(1): 212. doi: 10.1038/s42005-020-00453-8
    [58]
    LIANG Y, KOSHELEV K, ZHANG F CH, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces[J]. Nano Letters, 2020, 20(9): 6351-6356. doi: 10.1021/acs.nanolett.0c01752
    [59]
    XIANG J, XU Y, CHEN J D, et al. Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system[J]. Nanophotonics, 2020, 9(1): 133-142. doi: 10.1515/nanoph-2019-0341
    [60]
    NIU J Q, ZHAI Y Q, HAN Q Q, et al. Resonance-trapped bound states in the continuum in metallic THz metasurfaces[J]. Optics Letters, 2021, 46(2): 162-165. doi: 10.1364/OL.410791
    [61]
    DONG ZH D, MAHFOUD Z, PANIAGUA-DOMÍNGUEZ R, et al. Nanoscale mapping of optically inaccessible bound-states-in-the-continuum[J]. Light:Science &Applications, 2022, 11(1): 20.
    [62]
    SONG Q J, HU J SH, DAI SH W, et al. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry[J]. Science Advances, 2020, 6(34): eabc1160. doi: 10.1126/sciadv.abc1160
    [63]
    ZHEN B, HSU C W, LU L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401. doi: 10.1103/PhysRevLett.113.257401
    [64]
    DOELEMAN H M, MONTICONE F, DEN HOLLANDER W, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 2018, 12(7): 397-401. doi: 10.1038/s41566-018-0177-5
    [65]
    LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 2019, 5(5): eaaw2871. doi: 10.1126/sciadv.aaw2871
    [66]
    KOSHELEV K, BOGDANOV A, KIVSHAR Y. Meta-optics and bound states in the continuum[J]. Science Bulletin, 2019, 64(12): 836-842. doi: 10.1016/j.scib.2018.12.003
    [67]
    KOSHELEV K, TANG Y T, LI K F, et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 2019, 6(7): 1639-1644. doi: 10.1021/acsphotonics.9b00700
    [68]
    WANG Y L, HAN ZH H, DU Y, et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface[J]. Nanophotonics, 2021, 10(4): 1295-1307. doi: 10.1515/nanoph-2020-0582
    [69]
    KANG M, ZHANG Z Y, WU T, et al. Coherent full polarization control based on bound states in the continuum[J]. Nature Communications, 2022, 13(1): 4536. doi: 10.1038/s41467-022-31726-1
    [70]
    KÜHNER L, SORTINO L, BERTÉ R, et al. Radial bound states in the continuum for polarization-invariant nanophotonics[J]. Nature Communications, 2022, 13(1): 4992. doi: 10.1038/s41467-022-32697-z
    [71]
    FOLEY J M, YOUNG S M, PHILLIPS J D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J]. Physical Review B, 2014, 89(16): 165111. doi: 10.1103/PhysRevB.89.165111
    [72]
    ROMANO S, ZITO G, TORINO S, et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 2018, 6(7): 726-733. doi: 10.1364/PRJ.6.000726
    [73]
    TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
    [74]
    ZHOU Y, ZHENG H Y, KRAVCHENKO I I, et al. Flat optics for image differentiation[J]. Nature Photonics, 2020, 14(5): 316-323. doi: 10.1038/s41566-020-0591-3
    [75]
    CARLETTI L, KOSHELEV K, DE ANGELIS C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 2018, 121(3): 033903. doi: 10.1103/PhysRevLett.121.033903
    [76]
    KODIGALA A, LEPETIT T, GU Q, et al. Lasing action from photonic bound states in continuum[J]. Nature, 2017, 541(7636): 196-199. doi: 10.1038/nature20799
    [77]
    COLOM R, BINKOWSKI F, BETZ F, et al. Enhanced Purcell factor for nanoantennas supporting interfering resonances[J]. Physical Review Research, 2022, 4(2): 023189. doi: 10.1103/PhysRevResearch.4.023189
    [78]
    HUANG C, ZHANG CH, XIAO SH M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021. doi: 10.1126/science.aba4597
    [79]
    WANG B, LIU W ZH, ZHAO M X, et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 2020, 14(10): 623-628. doi: 10.1038/s41566-020-0658-1
    [80]
    GORKUNOV M V, ANTONOV A A, KIVSHAR Y S. Metasurfaces with maximum chirality empowered by bound states in the continuum[J]. Physical Review Letters, 2020, 125(9): 093903. doi: 10.1103/PhysRevLett.125.093903
    [81]
    HSU C W, ZHEN B, STONE A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1(9): 16048. doi: 10.1038/natrevmats.2016.48
    [82]
    FEDOTOV V A, ROSE M, PROSVIRNIN S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14): 147401. doi: 10.1103/PhysRevLett.99.147401
    [83]
    MANJAPPA M, SOLANKI A, KUMAR A, et al. Solution-processed lead iodide for ultrafast all-optical switching of terahertz photonic devices[J]. Advanced Materials, 2019, 31(32): 1901455.
    [84]
    EVLYUKHIN A B, BOZHEVOLNYI S I, PORS A, et al. Detuned electrical dipoles for plasmonic sensing[J]. Nano Letters, 2010, 10(11): 4571-4577. doi: 10.1021/nl102572q
    [85]
    ZHANG J F, MACDONALD K F, ZHELUDEV N I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial[J]. Optics Express, 2013, 21(22): 26721-26728. doi: 10.1364/OE.21.026721
    [86]
    TIAN J Y, LI Q, BELOV P A, et al. High-Q all-dielectric metasurface: super and suppressed optical absorption[J]. ACS Photonics, 2020, 7(6): 1436-1443. doi: 10.1021/acsphotonics.0c00003
    [87]
    LI J T, LI J, ZHENG CH L, et al. Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum[J]. Applied Physics Letters, 2021, 119(24): 241105. doi: 10.1063/5.0067937
    [88]
    VABISHCHEVICH P P, LIU S, SINCLAIR M B, et al. Enhanced second-harmonic generation using broken symmetry III–V semiconductor fano metasurfaces[J]. ACS Photonics, 2018, 5(5): 1685-1690. doi: 10.1021/acsphotonics.7b01478
    [89]
    FANG C ZH, YANG Q Y, YUAN Q CH, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electronic Advances, 2021, 4(6): 200030. doi: 10.29026/oea.2021.200030
    [90]
    MUHAMMAD N, CHEN Y, QIU CH W, et al. Optical bound states in continuum in MoS2-based metasurface for directional light emission[J]. Nano Letters, 2021, 21(2): 967-972. doi: 10.1021/acs.nanolett.0c03818
    [91]
    TUZ V R, KHARDIKOV V V, KUPRIIANOV A S, et al. High-quality trapped modes in all-dielectric metamaterials[J]. Optics Express, 2018, 26(3): 2905-2916. doi: 10.1364/OE.26.002905
    [92]
    HAN S, PITCHAPPA P, WANG W H, et al. Extended bound states in the continuum with symmetry‐Broken terahertz dielectric metasurfaces[J]. Advanced Optical Materials, 2021, 9(7): 2002001. doi: 10.1002/adom.202002001
    [93]
    KIM K H, KIM J R. High‐Q chiroptical resonances by quasi‐bound states in the continuum in dielectric metasurfaces with simultaneously broken in‐plane inversion and mirror symmetries[J]. Advanced Optical Materials, 2021, 9(22): 2101162. doi: 10.1002/adom.202101162
    [94]
    KOSHELEV K, LEPESHOV S, LIU M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018, 121(19): 193903. doi: 10.1103/PhysRevLett.121.193903
    [95]
    SUH W, YANIK M F, SOLGAARD O, et al. Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs[J]. Applied Physics Letters, 2003, 82(13): 1999-2001. doi: 10.1063/1.1563739
    [96]
    ZHAO X G, CHEN CH X, KAJ K, et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 2020, 7(11): 1548-1554. doi: 10.1364/OPTICA.404754
    [97]
    FRIEDRICH H, WINTGEN D. Interfering resonances and bound states in the continuum[J]. Physical Review A, 1985, 32(6): 3231-3242. doi: 10.1103/PhysRevA.32.3231
    [98]
    HSU C W, ZHEN B, LEE J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188-191. doi: 10.1038/nature12289
    [99]
    LIANG Y, PENG C, SAKAI K, et al. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach[J]. Physical Review B, 2011, 84(19): 195119. doi: 10.1103/PhysRevB.84.195119
    [100]
    YANG Y, PENG CH, LIANG Y, et al. Analytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 2014, 113(3): 037401. doi: 10.1103/PhysRevLett.113.037401
    [101]
    LI J T, YUE ZH, LI J, et al. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum[J]. Optics and Laser Technology, 2023. doi: 10.1016/j.optlastec.2023.109173
    [102]
    FAN SH H, SUH W, JOANNOPOULOS J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 2003, 20(3): 569-572. doi: 10.1364/JOSAA.20.000569
    [103]
    SHU W, WANG ZH, FAN SH H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1511-1518. doi: 10.1109/JQE.2004.834773
    [104]
    RUAN ZH CH, FAN SH H. Temporal coupled-mode theory for light scattering by an arbitrarily shaped object supporting a single resonance[J]. Physical Review A, 2012, 85(4): 043828. doi: 10.1103/PhysRevA.85.043828
    [105]
    KIKKAWA R, NISHIDA M, KADOYA Y. Polarization-based branch selection of bound states in the continuum in dielectric waveguide modes anti-crossed by a metal grating[J]. New Journal of Physics, 2019, 21(11): 113020. doi: 10.1088/1367-2630/ab4f54
    [106]
    HSU C W, ZHEN B, CHUA S L, et al. Bloch surface eigenstates within the radiation continuum[J]. Light:Science &Applications, 2013, 2(7): e84.
    [107]
    SADRIEVA Z, FRIZYUK K, PETROV M, et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 2019, 100(11): 115303. doi: 10.1103/PhysRevB.100.115303
    [108]
    WU P C, LIAO C Y, SAVINOV V, et al. Optical anapole metamaterial[J]. ACS Nano, 2018, 12(2): 1920-1927. doi: 10.1021/acsnano.7b08828
    [109]
    POSHAKINSKIY A V, PODDUBNY A N. Optomechanical kerker effect[J]. Physical Review X, 2019, 9(1): 011008. doi: 10.1103/PhysRevX.9.011008
    [110]
    SHAMKHI H K, BARYSHNIKOVA K V, SAYANSKIY A, et al. Transverse scattering and generalized kerker effects in all-dielectric mie-resonant metaoptics[J]. Physical Review Letters, 2019, 122(19): 193905. doi: 10.1103/PhysRevLett.122.193905
    [111]
    SAVINOV V, FEDOTOV V A, ZHELUDEV N I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials[J]. Physical Review B, 2014, 89(20): 205112. doi: 10.1103/PhysRevB.89.205112
    [112]
    KAELBERER T, FEDOTOV V A, PAPASIMAKIS N, et al. Toroidal Dipolar response in a metamaterial[J]. Science, 2010, 330(6010): 1510-1512. doi: 10.1126/science.1197172
    [113]
    FERNANDEZ-CORBATON I, NANZ S, ROCKSTUHL C. On the dynamic toroidal multipoles from localized electric current distributions[J]. Scientific Reports, 2017, 7(1): 7527. doi: 10.1038/s41598-017-07474-4
    [114]
    MUN J, SO S, JANG J, et al. Describing meta-atoms using the exact higher-order polarizability tensors[J]. ACS Photonics, 2020, 7(5): 1153-1162. doi: 10.1021/acsphotonics.9b01776
    [115]
    YIN X F, JIN J CH, SOLJAČIĆ M, et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 2020, 580(7804): 467-471. doi: 10.1038/s41586-020-2181-4
    [116]
    LIU W ZH, WANG B, ZHANG Y W, et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 2019, 123(11): 116104. doi: 10.1103/PhysRevLett.123.116104
    [117]
    JIN J CH, YIN X F, NI L F, et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 2019, 574(7779): 501-504. doi: 10.1038/s41586-019-1664-7
    [118]
    KANG M, ZHANG SH P, XIAO M, et al. Merging bound states in the continuum at off-high symmetry points[J]. Physical Review Letters, 2021, 126(11): 117402. doi: 10.1103/PhysRevLett.126.117402
    [119]
    HWANG M S, LEE H C, KIM K H, et al. Ultralow-threshold laser using super-bound states in the continuum[J]. Nature Communications, 2021, 12(1): 4135. doi: 10.1038/s41467-021-24502-0
    [120]
    CHEN Z H, YIN X F, JIN J CH, et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors[J]. Science Bulletin, 2022, 67(4): 359-366. doi: 10.1016/j.scib.2021.10.020
    [121]
    HAN S, CONG L Q, SRIVASTAVA Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 2019, 31(37): 1901921. doi: 10.1002/adma.201901921
    [122]
    YUE Z, LI J T, ZHENG CH L, et al. Resonance-trapped bound states in the continuum via all-silicon terahertz metasurface[J]. Optics Communications, 2022, 516: 128274. doi: 10.1016/j.optcom.2022.128274
    [123]
    FAN K B, SHADRIVOV I V, PADILLA W J. Dynamic bound states in the continuum[J]. Optica, 2019, 6(2): 169-173. doi: 10.1364/OPTICA.6.000169
    [124]
    LI J T, LI J, ZHENG CH L, et al. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces[J]. Carbon, 2021, 182: 506-515. doi: 10.1016/j.carbon.2021.06.037
    [125]
    CAMBIASSO J, KÖNIG M, CORTÉS E, et al. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 2018, 5(4): 1546-1557. doi: 10.1021/acsphotonics.7b01604
    [126]
    ROMANO S, ZITO G, MANAGÒ S, et al. Surface-enhanced Raman and fluorescence spectroscopy with an all-dielectric metasurface[J]. The Journal of Physical Chemistry C, 2018, 122(34): 19738-19745. doi: 10.1021/acs.jpcc.8b03190
    [127]
    NDAO A, HSU L, CAI W, et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum[J]. Nanophotonics, 2020, 9(5): 1081-1086. doi: 10.1515/nanoph-2020-0008
    [128]
    YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396. doi: 10.1038/s41566-019-0394-6
    [129]
    WANG J, KÜHNE J, KARAMANOS T, et al. All‐dielectric crescent metasurface sensor driven by bound states in the continuum[J]. Advanced Functional Materials, 2021, 31(46): 2104652. doi: 10.1002/adfm.202104652
    [130]
    LIU ZH J, XU Y, LIN Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 2019, 123(25): 253901. doi: 10.1103/PhysRevLett.123.253901
    [131]
    FANG C ZH, YANG Q Y, YUAN Q CH, et al. Efficient second-harmonic generation from silicon slotted nanocubes with bound states in the continuum[J]. Laser &Photonics Reviews, 2022, 16(5): 2100498.
    [132]
    LIU ZH J, WANG J Y, CHEN B, et al. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum[J]. Nano Letters, 2021, 21(17): 7405-7410. doi: 10.1021/acs.nanolett.1c01975
    [133]
    ZOGRAF G, KOSHELEV K, ZALOGINA A, et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum[J]. ACS Photonics, 2022, 9(2): 567-574. doi: 10.1021/acsphotonics.1c01511
    [134]
    MOHAMED S, WANG J, REKOLA H, et al. Controlling topology and polarization state of lasing photonic bound states in continuum[J]. Laser &Photonics Reviews, 2022, 16(7): 2100574.
    [135]
    HA S T, FU Y H, EMANI N K, et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 2018, 13(11): 1042-1047. doi: 10.1038/s41565-018-0245-5
    [136]
    LIU W ZH, LIU W, SHI L, et al. Topological polarization singularities in metaphotonics[J]. Nanophotonics, 2021, 10(5): 1469-1486. doi: 10.1515/nanoph-2020-0654
    [137]
    SHI T, DENG Z L, GENG G ZH, et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 2022, 13(1): 4111. doi: 10.1038/s41467-022-31877-1
    [138]
    OVERVIG A, YU N F, ALÙ A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 2021, 126(7): 073001. doi: 10.1103/PhysRevLett.126.073001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(4447) PDF downloads(1503) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return