Volume 16 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
WU Ling, LOU Yan, HOU Xin-yi, LI Bao-qun, LI Yong-liang, WANG Tian-shu, ZHAO Yi-wu. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191
Citation: WU Ling, LOU Yan, HOU Xin-yi, LI Bao-qun, LI Yong-liang, WANG Tian-shu, ZHAO Yi-wu. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191

Output characteristics of an all-fiber laser with a 2-μm MOPA structure

Funds:  Supported by National Natural Science Foundation of China (No. 61975021); Science and Technology Development Program of Jilin Province (No. 20220402014GH, No. 20200201185JC)
More Information
  • Corresponding author: lyan@cust.edu.cn
  • Received Date: 01 Sep 2022
  • Rev Recd Date: 28 Sep 2022
  • Accepted Date: 25 Nov 2022
  • Available Online: 24 Dec 2022
  • In order to improve the output performance of a high-power Thulium-Doped Fiber Laser (TDFL) and increase the optical-optical conversion efficiency of the system, a high-power TDFL with an all-fiber Main Oscillation Power Amplification (MOPA) structure was developed, which can operate in both Continuous Wave (CW) and Quasi-Continuous Wave (QCW) modes. First, a laser oscillator was built to study the output characteristics of the seed source laser. Then, a thulium-doped fiber amplifier was built and connected to the laser oscillator to study the output characteristics of the MOPA structured fiber laser. Finally, the pulse characteristics of the MOPA structured fiber laser were analyzed under the QCW modulation mode. The laser oscillator achieved a continuous and stable laser output with a central wavelength of 1940 nm, and the highest average output power was 18.56 W. The slope efficiency was 54.84%, and the spectrum was free of Raman components. Using this low-power continuous laser as the seed source through the homemade thulium-doped fiber amplifier, the average output power could reach 66.9 W, and the slope efficiency was 48.48%. When the system operated in the QCW mode, the frequency and duty cycle can be adjusted, and the peak power was calculated to be 80.3 W when the frequency was 75 Hz and the duty cycle was 10%. This research is of referential significance for the development of higher power MOPA lasers in the 2 μm band.

     

  • loading
  • [1]
    李鑫, 杨超, 李永亮. 2 μm高功率掺铥连续光纤激光器研究进展[J]. 激光杂志,2022,43(11):1-8. doi: 10.14016/j.cnki.jgzz.2022.11.001

    LI X, YANG CH, LI Y L. Research progress of 2 μm high-power thulium-doped CW fiber laser[J]. Laser Journal, 2022, 43(11): 1-8. (in Chinese) doi: 10.14016/j.cnki.jgzz.2022.11.001
    [2]
    MINGAREEV I, WEIRAUCH F, OLOWINSKY A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics &Laser Technology, 2012, 44(7): 2095-2099.
    [3]
    PAL A, SEN R, BREMER K, et al. "All-fiber" tunable laser in the 2 μm region, designed for CO2 detection[J]. Applied Optics, 2012, 51(29): 7011-7015. doi: 10.1364/AO.51.007011
    [4]
    王思颖, 陈静, 刘小平. 2 μm激光治疗子宫内膜息肉的临床疗效[J]. 中国激光医学杂志,2020,29(6):368-370.

    WANG S Y, CHEN J, LIU X P. Clinical efficacy of 2 μm laser treatment for endometrial polyps[J]. Chinese Journal of Laser Medicine, 2020, 29(6): 368-370. (in Chinese)
    [5]
    WANG X, ZHOU P, ZHANG H W, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers[J]. Optics Letters, 2014, 39(15): 4329-4332. doi: 10.1364/OL.39.004329
    [6]
    胡韵箫. 中红外医用光纤激光的研制及其与生物组织作用的研究[D]. 成都: 电子科技大学, 2017.

    HU Y X. Development of mid-infrared medical fiber laser and research on interaction of the laser with biologic tissue[D]. Chengdu: University of Electronic Science and Technology of China, 2017. (in Chinese)
    [7]
    刘敏, 高小峰. 铥光纤激光碎石基础研究和临床应用进展[J]. 中华泌尿外科杂志,2021,42(1):75-78. doi: 10.3760/cma.j.cn112330-20200907-00655

    LIU M, GAO X F. Advances in fundamental research and clinical application of Thulium fiber laser lithotripsy[J]. Chinese Journal of Urology, 2021, 42(1): 75-78. (in Chinese) doi: 10.3760/cma.j.cn112330-20200907-00655
    [8]
    RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
    [9]
    EHRENREICH T, LEVEILLE R, MAJID I, et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 2010, 7580: 758016. doi: 10.1117/12.842404
    [10]
    LÜ H B, ZHOU P, ZHANG H W, et al. High-power all-fiberized thulium-doped fiber MOPA[J]. Laser Physics Letters, 2013, 10(12): 125101. doi: 10.1088/1612-2011/10/12/125101
    [11]
    TANG Y L, LI X H, WANG Q J. High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering[J]. Optics Letters, 2013, 38(24): 5474-5477. doi: 10.1364/OL.38.005474
    [12]
    TANG Y L, LI X H, YAN ZH Y, et al. 50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 3100707.
    [13]
    LI X H, YU X CH, SUN ZH P, et al. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction[J]. Scientific Reports, 2015, 5: 16624. doi: 10.1038/srep16624
    [14]
    YANG C, JU Y L, YAO B Q, et al. 140 W high power all-fiber laser at 1940 nm with narrow spectral line-width by MOPA configuration[J]. Applied Physics B, 2016, 122(8): 230. doi: 10.1007/s00340-016-6504-y
    [15]
    PAL D, SEN R, PAL A. Design of all-fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C, 2017, 14(1-2): 1600127. doi: 10.1002/pssc.201600127
    [16]
    YAO W CH, SHAO ZH H, SHEN CH F, et al.. 400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth[C]. Proceedings of Advanced Solid State Lasers 2017, Optica Publishing Group, 2017: JTu2A. 33.
    [17]
    LIU X X, LI X H, TANG Y L, et al. PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-µm fiber laser[J]. Optics Letters, 2020, 45(1): 161-164. doi: 10.1364/OL.45.000161
    [18]
    SHIN J S, CHA Y H, CHUN B J, et al. 200-W continuous-wave thulium-doped all-fiber laser at 2050 nm[J]. Current Optics and Photonics, 2021, 5(3): 306-310.
    [19]
    施亚齐, 戴梦楠. 激光原理与技术[M]. 武汉: 华中科技大学出版社, 2012: 22-76.

    SHI Y Q, DAI M N. Laser Principles and Technology[M]. Wuhan: Huazhong University of Science & Technology Press, 2012: 22-76. (in Chinese)
    [20]
    AGRAWAL G P. Nonlinear Fiber Optics[M]. 5th ed. Amsterdam: Elsevier, 2013: 295-352.
    [21]
    PAL D, GHOSH A, SEN R, et al. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations[J]. Applied Optics, 2016, 55(23): 6151-6155. doi: 10.1364/AO.55.006151
    [22]
    韩文国, 延凤平, 冯亭, 等. 高功率掺铥光纤激光器及其在生物组织切割中的应用[J]. 发光学报,2021,42(5):708-716. doi: 10.37188/CJL.20210064

    HAN W G, YAN F P, FENG T, et al. High-power thulium-doped fiber laser and its application in biological tissue cutting[J]. Chinese Journal of Luminescence, 2021, 42(5): 708-716. (in Chinese) doi: 10.37188/CJL.20210064
    [23]
    匡尚奇, 郭祥帅, 冯玉玲, 等. 半导体激光器系统输出混沌激光研究进展[J]. 中国光学,2021,14(5):1133-1145. doi: 10.37188/CO.2020-0216

    KUANG SH Q, GUO X SH, FENG Y L, et al. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. (in Chinese) doi: 10.37188/CO.2020-0216
    [24]
    赵宏斌, 苏安, 尹向宝, 等. 石墨烯缺陷对光子晶体光吸收特性的调制[J]. 中国光学,2022,15(3):418-425. doi: 10.37188/CO.2021-0203

    ZHAO H B, SU A, YIN X B, et al. The modulation effect of graphene defects on the light absorption properties of photonic crystals[J]. Chinese Optics, 2022, 15(3): 418-425. (in Chinese) doi: 10.37188/CO.2021-0203
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(1020) PDF downloads(301) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return