Volume 16 Issue 3
May  2023
Turn off MathJax
Article Contents
LV Ting-ting, FU Tian-shu, LIU Dong-ming, SHI Jin-hui. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198
Citation: LV Ting-ting, FU Tian-shu, LIU Dong-ming, SHI Jin-hui. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198

Bandwidth-tunable terahertz metamaterial half-wave plate component

Funds:  Supported by National Natural Science Foundation of China (No. U1931121)
More Information
  • Author Bio:

    LV Ting-ting (1989—), female, Tangyuan city, Heilongjiang province, lecturer, received her PhD degree from School of Physics and Optoelectronic Engineering, Harbin Engineering University in 2022. She is mainly engaged in the research of structural design and application of tunable metamaterials. E-mail: oktingting521@126.com

    SHI Jin-hui (1979—), male, Zhaodong city, Heilongjiang province, professor and doctoral supervisor, received his PhD degree in materials science from Harbin Engineering University in 2007. He is mainly engaged in the application research of metamaterials. E-mail: shijinhui@hrbeu.edu.cn

  • Corresponding author: oktingting521@126.comshijinhui@hrbeu.edu.cn
  • Received Date: 24 Sep 2022
  • Rev Recd Date: 02 Nov 2022
  • Available Online: 09 Dec 2022
  • We propose a “leaf-type” hybrid metamaterial to realize bandwidth-tunable half-wave plate based on vanadium dioxide (VO2) phase transition. The hybrid metamaterial is regarded as a hollow “leaf-type” metallic structure and act as a dual-band half-wave plate when VO2 film is in the insulating phase. Within 1.01−1.17 THz and 1.47−1.95 THz, it can accomplish y- to x-polarization conversion with a polarization conversion rate over 0.9 and an average relative bandwidth of 26%. The metamaterial becomes a solid core “leaf-type” metallic structure when VO2 is in the metallic phase. Within 1.13−2.80 THz, it can act as a broadband half-wave plate with a relative bandwidth of 85%. The working principle of the bandwidth-tunable half-wave plate is explained by the instantaneous surface current distribution and electric field theory in detail. The proposed “leaf-type” hybrid metamaterial half-wave plate has potential application prospects in THz imaging, sensing and polarization detection.

     

  • loading
  • [1]
    KLEINER R. Filling the terahertz gap[J]. Science, 2007, 318(5854): 1254-1255. doi: 10.1126/science.1151373
    [2]
    LI J T, LI J, ZHENG C L, et al. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces[J]. Applied Physics Letters, 2021, 118(22): 221110. doi: 10.1063/5.0053236
    [3]
    LIU SH, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science &Applications, 2016, 5(5): e16076.
    [4]
    LI J, ZHENG CH L, WANG G C, et al. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J]. Photonics Research, 2021, 9(4): 567-573. doi: 10.1364/PRJ.415547
    [5]
    WU SH, ZHANG ZH, ZHANG Y, et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes[J]. Physical Review Letters, 2013, 110(20): 207401. doi: 10.1103/PhysRevLett.110.207401
    [6]
    HAO J M, YUAN Y, RAN L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
    [7]
    ZHELUDEV N I, PLUM E, FEDOTOV V A. Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength[J]. Applied Physics Letters, 2011, 99(17): 171915. doi: 10.1063/1.3656286
    [8]
    MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334. doi: 10.1021/acsnano.8b03569
    [9]
    WANG F, LIU X CH, WANG ZH P, et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J]. Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese) doi: 10.11990/jheu.201501046
    [10]
    ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
    [11]
    LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi: 10.37188/CO.2021-0030
    [12]
    LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. (in Chinese) doi: 10.37188/CO.2021-0108
    [13]
    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    [14]
    LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. (in Chinese) doi: 10.37188/CO.2021-0096
    [15]
    GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399
    [16]
    CHENG Y ZH, WITHAYACHUMNANKUL W, UPADHYAY A, et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 2014, 105(18): 181111. doi: 10.1063/1.4901272
    [17]
    CONG L Q, CAO W, ZHANG X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107. doi: 10.1063/1.4826536
    [18]
    HUANG Y Y, YAO Z H, HU F R, et al. Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region[J]. Carbon, 2017, 119: 305-313. doi: 10.1016/j.carbon.2017.04.037
    [19]
    ZHANG Y, FENG Y J, ZHAO J M. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave[J]. Carbon, 2020, 163: 244-252. doi: 10.1016/j.carbon.2020.03.001
    [20]
    SHEN N H, MASSAOUTI M, GOKKAVAS M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403. doi: 10.1103/PhysRevLett.106.037403
    [21]
    LV T T, ZHU Z, SHI J H, et al. Optically controlled background-free terahertz switching in chiral metamaterial[J]. Optics Letters, 2014, 39(10): 3066-3069. doi: 10.1364/OL.39.003066
    [22]
    WANG T L, ZHANG H Y, ZHANG Y, et al. Tunable bifunctional terahertz metamaterial device based on dirac semimetals and vanadium dioxide[J]. Optics Express, 2020, 28(12): 17434-17448. doi: 10.1364/OE.394784
    [23]
    SHU F ZH, WANG J N, PENG R W, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide[J]. Laser &Photonics Reviews, 2021, 15(10): 2100155.
    [24]
    ZHU W, YANG R SH, FAN Y CH, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J]. Nanoscale, 2018, 10(25): 12054-12061. doi: 10.1039/C8NR02587H
    [25]
    LI Z L, TANG H W, XU W X, et al. Coding metasurface design for terahertz beam shaping[J]. Chinese Journal of Radio Science, 2021, 36(6): 932-937. (in Chinese) doi: 10.12265/j.cjors.2021121
    [26]
    ZHENG X X, XIAO ZH Y, LING X Y. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film[J]. Plasmonics, 2018, 13(1): 287-291. doi: 10.1007/s11468-017-0512-6
    [27]
    DING F, ZHONG SH M, BOZHEVOLNYI S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced Optical Materials, 2018, 6(9): 1701204. doi: 10.1002/adom.201701204
    [28]
    LUO J, SHI X ZH, LUO X Q, et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials[J]. Optics Express, 2020, 28(21): 30861-30870. doi: 10.1364/OE.406006
    [29]
    YANG ZH H, JIANG M ZH, LIU Y CH, et al. Tunable-bandwidth terahertz polarization converter based on a vanadium dioxide hybrid metasurface[J]. Chinese Journal of Lasers, 2021, 48(17): 1714001. (in Chinese) doi: 10.3788/CJL202148.1714001
    [30]
    LV T T, CHEN X Y, DONG G H, et al. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial[J]. Nanophotonics, 2020, 9(10): 3235-3242. doi: 10.1515/nanoph-2019-0507
    [31]
    LIU M, XU Q, CHEN X Y, et al. Temperature-controlled asymmetric transmission of electromagnetic waves[J]. Scientific Reports, 2019, 9(1): 4097. doi: 10.1038/s41598-019-40791-4
    [32]
    周高潮. 电磁偏振转换及主动调控超材料器件[D]. 南京: 南京大学, 2018: 57-58.

    ZHOU G CH. Electromagnetic polarization-converting and active metamaterials[D]. Nanjing: Nanjing University, 2018: 57-58. (in Chinese)
    [33]
    ZHANG C H, ZHOU G CH, WU J B, et al. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials[J]. Physical Review Applied, 2019, 11(5): 054016. doi: 10.1103/PhysRevApplied.11.054016
    [34]
    ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9(1): 76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(465) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return