Citation: | LV Ting-ting, FU Tian-shu, LIU Dong-ming, SHI Jin-hui. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198 |
We propose a “leaf-type” hybrid metamaterial to realize bandwidth-tunable half-wave plate based on vanadium dioxide (VO2) phase transition. The hybrid metamaterial is regarded as a hollow “leaf-type” metallic structure and act as a dual-band half-wave plate when VO2 film is in the insulating phase. Within 1.01−1.17 THz and 1.47−1.95 THz, it can accomplish
[1] |
KLEINER R. Filling the terahertz gap[J]. Science, 2007, 318(5854): 1254-1255. doi: 10.1126/science.1151373
|
[2] |
LI J T, LI J, ZHENG C L, et al. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces[J]. Applied Physics Letters, 2021, 118(22): 221110. doi: 10.1063/5.0053236
|
[3] |
LIU SH, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science &Applications, 2016, 5(5): e16076.
|
[4] |
LI J, ZHENG CH L, WANG G C, et al. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J]. Photonics Research, 2021, 9(4): 567-573. doi: 10.1364/PRJ.415547
|
[5] |
WU SH, ZHANG ZH, ZHANG Y, et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes[J]. Physical Review Letters, 2013, 110(20): 207401. doi: 10.1103/PhysRevLett.110.207401
|
[6] |
HAO J M, YUAN Y, RAN L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908
|
[7] |
ZHELUDEV N I, PLUM E, FEDOTOV V A. Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength[J]. Applied Physics Letters, 2011, 99(17): 171915. doi: 10.1063/1.3656286
|
[8] |
MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334. doi: 10.1021/acsnano.8b03569
|
[9] |
WANG F, LIU X CH, WANG ZH P, et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J]. Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese) doi: 10.11990/jheu.201501046
|
[10] |
ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
|
[11] |
LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi: 10.37188/CO.2021-0030
|
[12] |
LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. (in Chinese) doi: 10.37188/CO.2021-0108
|
[13] |
FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
|
[14] |
LIN R Y, WU Y F, FU B Y, et al. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. (in Chinese) doi: 10.37188/CO.2021-0096
|
[15] |
GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399
|
[16] |
CHENG Y ZH, WITHAYACHUMNANKUL W, UPADHYAY A, et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 2014, 105(18): 181111. doi: 10.1063/1.4901272
|
[17] |
CONG L Q, CAO W, ZHANG X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107. doi: 10.1063/1.4826536
|
[18] |
HUANG Y Y, YAO Z H, HU F R, et al. Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region[J]. Carbon, 2017, 119: 305-313. doi: 10.1016/j.carbon.2017.04.037
|
[19] |
ZHANG Y, FENG Y J, ZHAO J M. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave[J]. Carbon, 2020, 163: 244-252. doi: 10.1016/j.carbon.2020.03.001
|
[20] |
SHEN N H, MASSAOUTI M, GOKKAVAS M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403. doi: 10.1103/PhysRevLett.106.037403
|
[21] |
LV T T, ZHU Z, SHI J H, et al. Optically controlled background-free terahertz switching in chiral metamaterial[J]. Optics Letters, 2014, 39(10): 3066-3069. doi: 10.1364/OL.39.003066
|
[22] |
WANG T L, ZHANG H Y, ZHANG Y, et al. Tunable bifunctional terahertz metamaterial device based on dirac semimetals and vanadium dioxide[J]. Optics Express, 2020, 28(12): 17434-17448. doi: 10.1364/OE.394784
|
[23] |
SHU F ZH, WANG J N, PENG R W, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide[J]. Laser &Photonics Reviews, 2021, 15(10): 2100155.
|
[24] |
ZHU W, YANG R SH, FAN Y CH, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J]. Nanoscale, 2018, 10(25): 12054-12061. doi: 10.1039/C8NR02587H
|
[25] |
LI Z L, TANG H W, XU W X, et al. Coding metasurface design for terahertz beam shaping[J]. Chinese Journal of Radio Science, 2021, 36(6): 932-937. (in Chinese) doi: 10.12265/j.cjors.2021121
|
[26] |
ZHENG X X, XIAO ZH Y, LING X Y. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film[J]. Plasmonics, 2018, 13(1): 287-291. doi: 10.1007/s11468-017-0512-6
|
[27] |
DING F, ZHONG SH M, BOZHEVOLNYI S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced Optical Materials, 2018, 6(9): 1701204. doi: 10.1002/adom.201701204
|
[28] |
LUO J, SHI X ZH, LUO X Q, et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials[J]. Optics Express, 2020, 28(21): 30861-30870. doi: 10.1364/OE.406006
|
[29] |
YANG ZH H, JIANG M ZH, LIU Y CH, et al. Tunable-bandwidth terahertz polarization converter based on a vanadium dioxide hybrid metasurface[J]. Chinese Journal of Lasers, 2021, 48(17): 1714001. (in Chinese) doi: 10.3788/CJL202148.1714001
|
[30] |
LV T T, CHEN X Y, DONG G H, et al. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial[J]. Nanophotonics, 2020, 9(10): 3235-3242. doi: 10.1515/nanoph-2019-0507
|
[31] |
LIU M, XU Q, CHEN X Y, et al. Temperature-controlled asymmetric transmission of electromagnetic waves[J]. Scientific Reports, 2019, 9(1): 4097. doi: 10.1038/s41598-019-40791-4
|
[32] |
周高潮. 电磁偏振转换及主动调控超材料器件[D]. 南京: 南京大学, 2018: 57-58.
ZHOU G CH. Electromagnetic polarization-converting and active metamaterials[D]. Nanjing: Nanjing University, 2018: 57-58. (in Chinese)
|
[33] |
ZHANG C H, ZHOU G CH, WU J B, et al. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials[J]. Physical Review Applied, 2019, 11(5): 054016. doi: 10.1103/PhysRevApplied.11.054016
|
[34] |
ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9(1): 76.
|