Volume 16 Issue 3
May  2023
Turn off MathJax
Article Contents
LIU Qing-zhi, YI Hua, JIANG Hai, LIU Yin-nian. Thermal control design and flight test of a satellite-borne cryogenic optical system[J]. Chinese Optics, 2023, 16(3): 542-549. doi: 10.37188/CO.2022-0200
Citation: LIU Qing-zhi, YI Hua, JIANG Hai, LIU Yin-nian. Thermal control design and flight test of a satellite-borne cryogenic optical system[J]. Chinese Optics, 2023, 16(3): 542-549. doi: 10.37188/CO.2022-0200

Thermal control design and flight test of a satellite-borne cryogenic optical system

Funds:  Supported by National Major Science and Technology Project of SJ-9 Satellite
More Information
  • Corresponding author: looup@sina.com
  • Received Date: 24 Sep 2022
  • Rev Recd Date: 11 Oct 2022
  • Available Online: 06 Feb 2023
  • In order to reduce influence of background infrared radiation, the temperature of the whole optical system should be below −20 °C for satellite-borne long-wave infrared imagers working in orbit. On the base of the weak heat conduction structure, a Ω type flexible sunshield made of MLI was developed and a cryogenic optical system was achieved through direct radiation cooling. Cage-like three-dimensional heat conduction straps made of copper were developed and an isothermal design for the body tube was realized. The cryogenic optical system applied to space remote sensing was used for the first time in China when it was tested in orbit with SJ-9B satellite. The results showed the temperature of the whole optical system could be maintained at −35 °C~−20 °C all the time, and the temperature difference in the body tube was no more than 4 °C. All flight test data met the temperature requirement of the long-wave infrared imager. This thermal control method is simple and effective, which can provide a reference for the thermal design of similar satellite-borne infrared optical systems.

     

  • loading
  • [1]
    单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学,2022,15(1):72-78. doi: 10.37188/CO.2021-0116

    SHAN Q SH, XIE M L, LIU CH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese) doi: 10.37188/CO.2021-0116
    [2]
    汤天瑾, 李岩. 红外相机共孔径双波段成像光学系统[J]. 应用光学,2015,36(4):513-518. doi: 10.5768/JAO201536.0401004

    TANG T J, LI Y. Dual-band common aperture optical system for infrared camera[J]. Journal of Applied Optics, 2015, 36(4): 513-518. (in Chinese) doi: 10.5768/JAO201536.0401004
    [3]
    陈建发, 潘枝峰, 王合龙, 等. 基于制冷型探测器的双波段红外光学系统无热化设计[J]. 电光与控制,2019,26(10):83-86. doi: 10.3969/j.issn.1671-637X.2019.10.017

    CHEN J F, PAN ZH F, WANG H L, et al. Athermalization design of a dual-band infrared optical system with cryogenic detector[J]. Electronics Optics &Control, 2019, 26(10): 83-86. (in Chinese) doi: 10.3969/j.issn.1671-637X.2019.10.017
    [4]
    刘星洋, 翟尚礼, 李靖, 等. 制冷型中波红外偏振成像光学系统设计[J]. 红外与激光工程,2021,50(2):20200208. doi: 10.3788/IRLA20200208

    LIU X Y, ZHAI SH L, LI J, et al. Design of cooled medium-wave infrared polarization imaging optical system[J]. Infrared and Laser Engineering, 2021, 50(2): 20200208. (in Chinese) doi: 10.3788/IRLA20200208
    [5]
    陆燕, 刘恩光, 谢荣建. 国外空间红外观测中的低温光学技术发展概况[J]. 真空与低温,2011(S1):530-536.

    LU Y, LIU E G, XIE R J. Development of low-temperature optical technology in foreign space infrared observation[J]. Vacuum &Cryogenics, 2011(S1): 530-536. (in Chinese)
    [6]
    HIRABAYASHI M, NARASAKI K, TSUNEMATSU S, et al. Thermal design and its on-orbit performance of the AKARI cryostat[J]. Cryogenics, 2008, 48(5-6): 189-197. doi: 10.1016/j.cryogenics.2008.03.003
    [7]
    张旋, 赵高飞, 潘鸣. 空间红外相机高精度低温光学扫描技术研究[J]. 科学技术与工程,2012,12(16):3995-3999. doi: 10.3969/j.issn.1671-1815.2012.16.047

    ZHANG X, ZHAO G F, PAN M. High precision cryogenic scanning technology for space infrared camera[J]. Science Technology and Engineering, 2012, 12(16): 3995-3999. (in Chinese) doi: 10.3969/j.issn.1671-1815.2012.16.047
    [8]
    刘伏龙, 李春林. 低温光学技术在航天遥感器上的应用研究[J]. 真空与低温,2011(S1):537-543.

    LIU F L, LI CH L. Application of cryogenic optical technology in space borne remote sensors[J]. Vacuum &Cryogenics, 2011(S1): 537-543. (in Chinese)
    [9]
    郑兴林, 马龙. 光学遥感器微晶玻璃镜头组件空间低温模拟试验技术[J]. 航天器环境工程,2009,26(3):267-271. doi: 10.3969/j.issn.1673-1379.2009.03.016

    ZHENG X L, MA L. Low-temperature simulation test technology of nucleated glass lens used for the optical remote sensor in space environment[J]. Spacecraft Environment Engineering, 2009, 26(3): 267-271. (in Chinese) doi: 10.3969/j.issn.1673-1379.2009.03.016
    [10]
    马宁, 刘奕, 李江勇, 等. 红外低温光学关键技术研究综述[J]. 激光与红外,2017,47(10):1195-1200. doi: 10.3969/j.issn.1001-5078.2017.10.001

    MA N, LIU Y, LI J Y, et al. Review on key technologies of infrared cryogenic optics[J]. Laser &Infrared, 2017, 47(10): 1195-1200. (in Chinese) doi: 10.3969/j.issn.1001-5078.2017.10.001
    [11]
    周超. 低温红外系统光机结构设计[J]. 红外与激光工程,2013,42(8):2092-2096. doi: 10.3969/j.issn.1007-2276.2013.08.029

    ZHOU CH. Opto-mechanical design for a cryogenic IR system[J]. Infrared and Laser Engineering, 2013, 42(8): 2092-2096. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.08.029
    [12]
    刘银年, 王建宇, 薛永祺. 环境减灾-1B卫星红外相机的研制[J]. 航天器工程,2009,18(6):50-56.

    LIU Y N, WANG J Y, XUE Y Q. Infrared scanner of HJ-1B satellite[J]. Spacecraft Engineering, 2009, 18(6): 50-56. (in Chinese)
    [13]
    刘银年. “高分五号”卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感,2018,39(3):25-28. doi: 10.3969/j.issn.1009-8518.2018.03.003

    LIU Y N. Visible-shortwave infrared hyperspectral imager of GF-5 satellite[J]. Spacecraft Recovery &Remote Sensing, 2018, 39(3): 25-28. (in Chinese) doi: 10.3969/j.issn.1009-8518.2018.03.003
    [14]
    闵桂荣, 郭舜. 航天器热控制[M]. 2版. 北京: 科学出版社, 1998.

    MIN G R, GUO SH. Space Thermal Control[M]. 2nd ed. Beijing: Science Press, 1998. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views(488) PDF downloads(207) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return