Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
GAO Wei-rao, DONG Ke-yan, JIANG Lun. Isolation of single wavelength laser communication terminals[J]. Chinese Optics, 2023, 16(5): 1137-1148. doi: 10.37188/CO.2022-0253
Citation: GAO Wei-rao, DONG Ke-yan, JIANG Lun. Isolation of single wavelength laser communication terminals[J]. Chinese Optics, 2023, 16(5): 1137-1148. doi: 10.37188/CO.2022-0253

Isolation of single wavelength laser communication terminals

doi: 10.37188/CO.2022-0253
Funds:  Supported by National Natural Science Foundation of China (No.U2141231, No.91838301)
More Information
  • Corresponding author: dongkeyan@163.com
  • Received Date: 12 Dec 2022
  • Rev Recd Date: 06 Jan 2023
  • Accepted Date: 04 Apr 2023
  • Available Online: 05 May 2023
  • For data communication between single wavelength laser communication terminals, good isolation between signal transmission and reception is the key to establishing duplex bidirectional laser communication. In this paper, with respect to the transmission and reception scheme of a single laser wavelength laser communication terminal and its overall communication performance, the influence of the surface roughness and contamination level of key components on the isolation performance of the laser communication terminal is analyzed. The model parameters are derived from Harvey model and ABg model, and the designed scheme is analyzed using TracePro software. When the surface roughness or contamination level of λ/2 wave plate, λ/4 wave plate and optical antenna structure in the signal transmission channel is improved, the backscattering caused by these elements will reduce the isolation performance in the signal transmission channel. At the same time, the measurement result of laser communication terminal isolation is 77.86 dB, which is basically consistent with the software simulation result of 78.35 dB. This can be applied in laser communication system.

     

  • loading
  • [1]
    姜会林, 付强, 赵义武, 等. 空间信息网络与激光通信发展现状及趋势[J]. 物联网学报,2019,3(2):1-8.

    JIANG H L, FU Q, ZHAO Y W, et al. Development status and trend of space information network and laser communication[J]. Chinese Journal on Internet of Things, 2019, 3(2): 1-8. (in Chinese)
    [2]
    高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese) doi: 10.37188/CO.2020-0033
    [3]
    田思聪, 佟存柱, 王立军, 等. 长春光机所高速垂直腔面发射激光器研究进展[J]. 中国光学(中英文),2022,15(5):946-953. doi: 10.37188/CO.2022-0136

    TIAN S C, TONG C ZH, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. (in Chinese) doi: 10.37188/CO.2022-0136
    [4]
    KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys &Tutorials, 2017, 19(1): 57-96.
    [5]
    李禹希, 张刘, 陈思桐, 等. 基于自抗扰算法的光电跟踪伺服控制方法研究[J]. 中国光学,2022,15(3):562-567. doi: 10.37188/CO.2022-0090

    LI Y X, ZHANG L, CHEN S T, et al. Photoelectric tracking servo control method based on active disturbance rejection algorithm[J]. Chinese Optics, 2022, 15(3): 562-567. (in Chinese) doi: 10.37188/CO.2022-0090
    [6]
    高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi: 10.3788/CO.20181106.0901

    GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese) doi: 10.3788/CO.20181106.0901
    [7]
    吴从均, 颜昌翔, 高志良. 空间激光通信发展概述[J]. 中国光学,2013,6(5):670-680. doi: 10.3788/CO.20130605.0670

    WU C J, YAN CH X, GAO ZH L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680. (in Chinese) doi: 10.3788/CO.20130605.0670
    [8]
    吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036

    LÜ B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036
    [9]
    夏方园, 杨建峰, 幺周石, 等. 卡塞格伦光学天线收发隔离度分析与测试[J]. 光子学报,2017,46(10):1023001. doi: 10.3788/gzxb20174610.1023001

    XIA F Y, YANG J F, YAO ZH SH, et al. Transmit-receive isolation analysis and test of cassegrain optical antenna[J]. Acta Photonica Sinica, 2017, 46(10): 1023001. (in Chinese) doi: 10.3788/gzxb20174610.1023001
    [10]
    曲杨. 高精度低成本激光振镜扫描3D视觉系统关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    QU Y. Key technologies of high percision and low cost galvanometer scanning laser 3D vision system[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [11]
    XIA F Y, YANG J F, YAO Z S, et al. Investigation of isolation for free space laser communication in the mono-wavelength optical T/R channels[J]. Optik, 2019, 181: 738-747. doi: 10.1016/j.ijleo.2018.12.090
    [12]
    凌晋江, 李钢, 张仁斌, 等. 偏振光谱BRDF建模与仿真[J]. 光谱学与光谱分析,2016,36(1):42-46. doi: 10.3964/j.issn.1000-0593(2016)01-0042-05

    LING J J, LI G, ZHANG R B, et al. Modeling and simulation of spectral polarimetric BRDF[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 42-46. (in Chinese) doi: 10.3964/j.issn.1000-0593(2016)01-0042-05
    [13]
    BENNETT H E. Scattering characteristics of optical materials[J]. Optical Engineering, 1978, 17(5): 175480.
    [14]
    王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报,2022,51(7):0751406. doi: 10.3788/gzxb20225107.0751406

    WANG H, CHEN Q F, MA ZH P, et al. Development and prospect of stray light suppression and evaluation technology (Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751406. (in Chinese) doi: 10.3788/gzxb20225107.0751406
    [15]
    李茂月, 刘泽隆, 赵伟翔, 等. 面结构光在机检测的叶片反光抑制技术[J]. 中国光学,2022,15(3):464-475. doi: 10.37188/CO.2021-0194

    LI M Y, LIU Z L, ZHAO W X, et al. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. (in Chinese) doi: 10.37188/CO.2021-0194
    [16]
    石栋梁. 基于BRDF的光机系统杂散辐射研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    SHI D L. Research on stray light of optical and mechanical system based on BRDF[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [17]
    李朝辉, 赵建科, 徐亮, 等. 点源透过率测试系统精度标定与分析[J]. 物理学报,2016,65(11):114206. doi: 10.7498/aps.65.114206

    LI ZH H, ZHAO J K, XU L, et al. Analysis and calibration of precision for point source transmittance system[J]. Acta Physica Sinica, 2016, 65(11): 114206. (in Chinese) doi: 10.7498/aps.65.114206
    [18]
    HUBBARD R. M1 microroughness and dust contamination[EB/OL]. (2013-11). https://dkist.nso.edu/sites/atst.nso.edu/files/docs/TN-0013-D.pdf.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article views(200) PDF downloads(147) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return