Citation: | ZHANG Jing, ZHANG Bo, LIU Kai, WANG Kai-yang, FENG Shu-long, LI Wen-hao, YAO Xue-feng. Effect of slit height on the spectral resolution of a monochromator[J]. Chinese Optics, 2023, 16(6): 1442-1449. doi: 10.37188/CO.2023-0004 |
Monochromators are widely used in spectral calibration, material analysis and other aspects, so research of high spectral resolution monochromator systems is of great significance. Based on the vector grating equation, the influence of the height of the incident slit on the spectral line bending of a spectrometer is investigated, and the analytical expressions of the spectral line bending at the same wavelength and the slit height are given. An optimization scheme of the spectral resolution of the monochromator based on the suppression of spectral line bending by the slit height is proposed. According to the performance index requirements of a highly sensitive and ultra-fast time response detector, a three-grating monochromator optical system with a spectral resolution of 0.1 nm and a band range of 185−900 nm was designed, and a prototype was built to verify the influence of the slit height on spectral line bending, and to explore the influence of slit height on spectral resolution on the above basis. The experimental results show that the spectral resolution can be improved from 0.32 nm to 0.1 nm by optimizing the slit height when the slit width is fixed.
[1] |
武志昆, 石恩涛, 王咏梅. 消谱线弯曲PGP型成像光谱仪系统设计[J]. 红外与激光工程,2021,50(6):20200433. doi: 10.3788/IRLA20200433
WU ZH K, SHI E T, WANG Y M. Design of PGP imaging spectrometer with eliminating spectral line bending[J]. Infrared and Laser Engineering, 2021, 50(6): 20200433. (in Chinese) doi: 10.3788/IRLA20200433
|
[2] |
张尹馨, 段文浩, 李婉卓. 结合三反消像散光学系统的中阶梯光栅光谱仪设计[J]. 天津大学学报(自然科学与工程技术版),2022,55(5):519-526.
ZHANG Y X, DUAN W H, LI W ZH. Design of echelle spectrometer with a three-mirror anastigmat system[J]. Journal of Tianjin University (Natural Science and Technology), 2022, 55(5): 519-526. (in Chinese)
|
[3] |
曾英杰, 支瑜亮, 范贤光, 等. 小型一体式针尖增强拉曼光谱仪设计与评价[J]. 分析化学,2022,50(1):39-46. doi: 10.19756/j.issn.0253-3820.210483
ZENG Y J, ZHI Y L, FAN X G, et al. Design and evaluation of small integrated point-enhanced Raman spectrometer[J]. Chinese Journal of Analytical Chemistry, 2022, 50(1): 39-46. (in Chinese) doi: 10.19756/j.issn.0253-3820.210483
|
[4] |
程军杰, 曹智, 杨灿然, 等. 便携式远程激光诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.
CHENG J J, CAO ZH, YANG C R, et al. Portable remote laser-induced breakdown spectroscopy system and its quantitative analysis performance[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese)
|
[5] |
贾辉, 姚勇. 微小型光栅光谱仪光学系统的特点与光谱分辨率的提高[J]. 光谱学与光谱分析,2007,27(8):1653-1656.
JIA H, YAO Y. Characteristics of typical optical systems with diffractive gratings of micro-spectrometers and improvement of spectrometer's resolution[J]. Spectroscopy and Spectral Analysis, 2007, 27(8): 1653-1656. (in Chinese)
|
[6] |
代锦辉. 基于修正岭估计模型提高成像光谱仪光谱分辨率[D]. 武汉: 华中科技大学, 2019.
DAI J H. Improving spectral resolution of imaging spectrometer based on modified ridge estimation method[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
|
[7] |
毛靖华, 王咏梅, 石恩涛, 等. 星载高光谱成像光谱仪狭缝函数测试方法的研究[J]. 光谱学与光谱分析,2017,37(4):1286-1290.
MAO J H, WANG Y M, SHI E T, et al. Study on the slitfunction test method based on hyperspectral imaging instrument[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1286-1290. (in Chinese)
|
[8] |
陈洪福, 巩岩, 骆聪, 等. 消谱线弯曲棱镜-光栅型成像光谱仪设计[J]. 光学学报,2014,34(9):09220004.
CHEN H F, GONG Y, LUO C, et al. Design of prism-grating imaging spectrometer with eliminating spectral line curvature[J]. Acta Optica Sinica, 2014, 34(9): 09220004. (in Chinese)
|
[9] |
王凯平. 基于谱线展宽和线移方法的激光等离子体状态诊断研究[D]. 兰州: 西北师范大学, 2020.
WANG K P. Study on laser produced plasma state diagnosis based on spectral line broadening and shifting methods[D]. Lanzhou: Northwest Normal University, 2020. (in Chinese)
|
[10] |
徐艳, 李春来, 刘世界, 等. 均匀分布狭缝阵列编码光谱成像系统的仿真与验证[J]. 半导体光电,2021,42(4):562-567. doi: 10.16818/j.issn1001-5868.2021.04.022
XU Y, LI CH L, LIU SH J, et al. Simulation and verification of uniformly distributed-slit array coded spectral imaging system[J]. Semiconductor Optoelectronics, 2021, 42(4): 562-567. (in Chinese) doi: 10.16818/j.issn1001-5868.2021.04.022
|
[11] |
李继峰. 多角度双波段大气探测光谱仪设计与研究[D]. 长春: 中国科学院大学, 2022.
LI J F. Design and research of multi-angle and double-band atmospheric sounding spectrometer[D]. Changchun: University of Chinese Academy of Sciences, 2022. (in Chinese)
|
[12] |
张晓龙, 范欣雨. 消像散Czerny-Turner光谱成像系统的设计[J]. 光学技术,2020,46(1):33-40.
ZHANG X L, FAN X Y. Design of anastigmatic Czerny-Turner spectral imaging system[J]. Optical Technique, 2020, 46(1): 33-40. (in Chinese)
|
[13] |
刘彪, 张敏, 李东波. 一种C-T结构改进型光谱仪的光路结构设计[J]. 机械设计与制造工程,2022,51(2):15-20. doi: 10.3969/j.issn.2095-509X.2022.02.004
LIU B, ZHANG M, LI D B. Optical path structure design of a C-T structure improved spectrometer[J]. Machine Design and Manufacturing Engineering, 2022, 51(2): 15-20. (in Chinese) doi: 10.3969/j.issn.2095-509X.2022.02.004
|
[14] |
吴云鹏, 王军. M型Czerny-Turner光谱仪结构优化设计与分析[J]. 激光与光电子学进展,2022,59(11):1130002.
WU Y P, WANG J. Structural optimization design and analysis of M-type Czerny-Turner spectrometer[J]. Laser &Optoelectronics Progress, 2022, 59(11): 1130002. (in Chinese)
|
[15] |
张佳伦. 大视场自由曲面成像光谱仪光学系统设计方法研究[D]. 长春: 中国科学院大学, 2022.
ZHANG J L. Research on design method of optical system of large field of view imaging spectrometer with freeform surface[D]. Changchun: University of Chinese Academy of Sciences, 2022. (in Chinese)
|
[16] |
王宏霞. 基于数字微镜的原子荧光分析测试方法及软件研究[D]. 长春: 吉林大学, 2022.
WANG H X. Research on analytical & test methods and software of atomic fluorescence spectrometry based on digital micromirror device[D]. Changchun: Jilin University, 2022. (in Chinese)
|
[17] |
张松涛, 王樱蕙, 张洪杰. Nd3+离子敏化的荧光纳米探针用于近红外二区血管成像[J]. 应用化学,2022,39(4):685-693.
ZHANG S T, WANG Y H, ZHANG H J. Nd3+ sensitized fluorescent nanoprobes for vascular imaging in the second near infrared window[J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 685-693. (in Chinese)
|
[18] |
吴长坤, 张为, 郝亚喆. 可见/近红外实时成像光谱仪控制系统设计[J]. 中国光学,2022,15(2):348-354.
WU CH K, ZHANG W, HAO Y ZH. Design of a control system for a visible/near-infrared real-time imaging spectrometer[J]. Chinese Optics, 2022, 15(2): 348-354. (in Chinese)
|
[19] |
范纪泽, 李博, 张璐, 等. 应用于作物荧光检测的改进型Offner光谱仪设计[J]. 中国光学,2021,14(6):1459-1467. doi: 10.37188/CO.2021-0073
FAN J Z, LI B, ZHANG L, et al. Design of an improved Offner spectrometer for crop fluorescence detection[J]. Chinese Optics, 2021, 14(6): 1459-1467. (in Chinese) doi: 10.37188/CO.2021-0073
|
[20] |
单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学,2022,15(1):72-78. doi: 10.37188/CO.2021-0116
SHAN Q SH, XIE M L, LIU ZH H, et al. Design of refrigerated LWIR optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese) doi: 10.37188/CO.2021-0116
|
[21] |
李寒霜. 紫外—真空紫外太阳光谱仪及光谱/辐射定标研究[D]. 长春: 中国科学院大学, 2019.
LI H SH. Study on UV-VUV solar spectrometer and spectral/radiation calibration[D]. Changchun: University of Chinese Academy of Sciences, 2019. (in Chinese)
|
[22] |
蔡东浩, 李雅灿, 魏立冬, 等. 高光谱成像仪中曲面棱镜的装调公差研究[J]. 光学学报,2021,41(6):0608001. doi: 10.3788/AOS202141.0608001
CAI D H, LI Y C, WEI L D, et al. Fabricating tolerance of curved prisms in hyperspectral spectrometer[J]. Acta Optica Sinica, 2021, 41(6): 0608001. (in Chinese) doi: 10.3788/AOS202141.0608001
|
[23] |
杨晋, 尹禄, 姚雪峰, 等. 新型便携式中阶梯光栅光谱仪光学设计与消杂散光研究[J]. 光学学报,2015,35(8):0812001. doi: 10.3788/AOS201535.0812001
YANG J, YIN L, YAO X F, et al. Optical design and stray light suppression of a new portable echelle spectrometer[J]. Acta Optica Sinica, 2015, 35(8): 0812001. (in Chinese) doi: 10.3788/AOS201535.0812001
|