Volume 16 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
FAN Hao-ran, CHEN Xi, ZHENG Lei, XIE Wen-xia, JI Xin, ZHENG Quan. High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power[J]. Chinese Optics, 2023, 16(6): 1318-1323. doi: 10.37188/CO.2023-0026
Citation: FAN Hao-ran, CHEN Xi, ZHENG Lei, XIE Wen-xia, JI Xin, ZHENG Quan. High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power[J]. Chinese Optics, 2023, 16(6): 1318-1323. doi: 10.37188/CO.2023-0026

High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power

Funds:  Supported by the Key R & D Projects of Changchun Science and Technology Development Plan (No. 21ZGG15)
More Information
  • Corresponding author: chenxi@cnilaser.com
  • Received Date: 11 Feb 2023
  • Rev Recd Date: 13 Mar 2023
  • Available Online: 11 Jul 2023
  • To improve the detection efficiency of deep ultraviolet laser for semiconductor detection, it is necessary to develop 257 nm deep ultraviolet picosecond laser with high power and high repetition frequency. In this study, a 257 nm deep ultraviolet laser was experimentally investigated based on photonic fiber amplifier and extra-cavity frequency quadrupling. The seed source uses a fiber laser with a central wavelength of 1030 nm and a pulse width of 50 ps, delivering a power output of 20 mW and a repetition frequency of 19.8 MHz. High power 1030 nm fundamental frequency light was obtained through a two-stage ytterbium-doped double cladding (65 μm/275 μm) photonic crystal fiber rod amplification structure, and 257 nm deep ultraviolet laser was generated using double frequency crystal LBO and quadruple frequency crystal BBO. The seed source uses a two-stage photonic crystal fiber amplifier to get a 1030 nm laser with output power of 86 W. After the laser focusing system and frequency doubling, a second harmonic output power of 47.5 W at 515 nm and a fourth harmonic output power of 5.2 W at 257 nm were obtained.The fourth harmonic conversion efficiency was 6.05%. The experimental results show that this structure can obtain high power 257 nm deep ultraviolet laser output, providing a novel approach to improve the detection efficiency of the lasers for semiconductor detection.

     

  • loading
  • [1]
    郑佳琪, 丛振华, 刘兆军, 等. 高重复频率超短激光脉冲产生及频率变换技术发展趋势[J]. 中国激光,2021,48(12):1201008. doi: 10.3788/CJL202148.1201008

    ZHENG J Q, CONG ZH H, LIU ZH J, et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008. (in Chinese) doi: 10.3788/CJL202148.1201008
    [2]
    牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077
    [3]
    梁延杰, 刘景伟, 闫劭, 等. 蓝光LED激发深紫外上转换发光材料的光学定位与追踪应用[J]. 发光学报,2022,43(9):1436-1445. doi: 10.37188/CJL.20220177

    LIANG Y J, LIU J W, YAN SH, et al. Blue LED-excitable deep ultraviolet upconversion phosphor for optical locating and tracking application[J]. Chinese Journal of Luminescence, 2022, 43(9): 1436-1445. (in Chinese) doi: 10.37188/CJL.20220177
    [4]
    XU H, LU H, LI ZH L, et al. Deep-ultraviolet femtosecond laser source at 243nm for hydrogen spectroscopy[J]. Optics Express, 2021, 29(11): 17398-17404. doi: 10.1364/OE.426917
    [5]
    WU H Y, ZHANG ZH Q, CHEN S, et al. Development of a deep-ultraviolet pulse laser source operating at 234 nm for direct cooling of Al+ ion clocks[J]. Optics Express, 2021, 29(8): 11468-11478. doi: 10.1364/OE.421684
    [6]
    SADRAEIAN M, ZHANG L, AAVANI F et al.. Viral inactivation by light[J] elight, 2022,18(2).
    [7]
    KAWANO Y, HIKITA M, MATSUGAKI N, et al. A crystal-processing machine using a deep-ultraviolet laser: application to long-wavelength native SAD experiments[J]. Acta Crystallographica Section F:Structural Biology Communications, 2022, 78(2): 88-95. doi: 10.1107/S2053230X2101339X
    [8]
    潘永刚, 林兆文, 王奔, 等. 深紫外大口径非球面反射膜的均匀性研究[J]. 中国光学(中英文),2022,15(4):740-746. doi: 10.37188/CO.2022-0005

    PAN Y G, LIN ZH W, WANG B, et al. Film Thickness uniformity of deep ultraviolet large aperture aspheric mirror[J]. Chinese Optics, 2022, 15(4): 740-746. (in Chinese) doi: 10.37188/CO.2022-0005
    [9]
    BAI ZH N, BAI ZH X, SUN X L, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing[J]. Materials, 2020, 13(12): 2841. doi: 10.3390/ma13122841
    [10]
    王佳敏, 季艳慧, 梁志勇, 等. 532 nm皮秒脉冲激光对单晶硅的损伤特性研究[J]. 中国光学,2022,15(2):242-250. doi: 10.37188/CO.2021-0160

    WANG J M, JI Y H, LIANG ZH Y, et al. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. (in Chinese) doi: 10.37188/CO.2021-0160
    [11]
    MÜLLER M, KLENKE A, GOTTSCHALL T, et al. High-average-power femtosecond laser at 258 nm[J]. Optics Letters, 2017, 42(14): 2826-2829. doi: 10.1364/OL.42.002826
    [12]
    TURCICOVA H, NOVAK O, ROSKOT L, et al. New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser[J]. Optics Express, 2019, 27(17): 24286-24299. doi: 10.1364/OE.27.024286
    [13]
    DÉLEN X, DEYRA L, BENOIT A, et al. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm[J]. Optics Letters, 2013, 38(6): 995-997. doi: 10.1364/OL.38.000995
    [14]
    彭洋, 陈明祥, 罗小兵. 深紫外LED封装技术现状与展望[J]. 发光学报,2021,42(4):542-559. doi: 10.37188/CJL.20200394

    PENG Y, LUO M X, LUO X B. Status and perspectives of deep ultraviolet LED packaging technology[J]. Chinese Journal of Luminescence, 2021, 42(4): 542-559. (in Chinese) doi: 10.37188/CJL.20200394
    [15]
    WANG L L, XU P F, ZHOU D CH. 1.5μm laser properties of large mode field Er3+/Yb3+ co-doped microstructured fiber cone[J]. Chinese Journal of Luminescence, 2022, 43(4): 509-517. doi: 10.37188/CJL.20220010
    [16]
    GOLDBERG L, COLE B, MCINTOSH C, et al. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb: YAG laser[J]. Optics Express, 2016, 24(15): 17397-17405. doi: 10.1364/OE.24.017397
    [17]
    KOHNO K, ORII Y, SAWADA H, et al. High-power DUV picosecond pulse laser with a gain-switched-LD-seeded MOPA and large CLBO crystal[J]. Optics Letters, 2020, 45(8): 2351-2354. doi: 10.1364/OL.389017
    [18]
    LEI Z, HUIRU Z, NIT, et al.. 'plug and-play' plasmonic metafibers for ultrafast fiber lasers[J]. Light: Advanced Manufacturing. doi: 10.37188/lam.2022.045.
    [19]
    陈晖, 白振旭, 王建才, 等. 百瓦级PCFA/LBO倍频绿光皮秒激光器[J]. 红外与激光工程,2021,50(11):20200522. doi: 10.3788/IRLA20200522

    CHEN H, BAI ZH X, WANG J C, et al. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522. (in Chinese) doi: 10.3788/IRLA20200522
    [20]
    HE H J, YU J, ZHU W T, et al. A deep-UV picosecond laser for photocathode electron gun[J]. Optics Communications, 2022, 512: 128059. doi: 10.1016/j.optcom.2022.128059
    [21]
    PAN L, GENG J H, JIANG SH B. High power picosecond green and deep ultraviolet generations with an all-fiberized MOPA[J]. Optics Letters, 2022, 47(19): 5140-5143. doi: 10.1364/OL.472644
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(516) PDF downloads(222) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return