Volume 17 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
LI Zhou, ZHANG Yao-yu, ZHOU Hui, KONG Xiang-long, ZHAO Xin-yu, LI Xiang-chen. Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system[J]. Chinese Optics, 2024, 17(6): 1359-1367. doi: 10.37188/CO.2023-0076
Citation: LI Zhou, ZHANG Yao-yu, ZHOU Hui, KONG Xiang-long, ZHAO Xin-yu, LI Xiang-chen. Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system[J]. Chinese Optics, 2024, 17(6): 1359-1367. doi: 10.37188/CO.2023-0076

Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system

cstr: 32171.14.CO.2023-0076
Funds:  Supported by National Natural Science Foundation of China (No. 62105330)
More Information
  • Corresponding author: 13604336836yaoyu@sina.com
  • Received Date: 04 May 2023
  • Rev Recd Date: 26 May 2023
  • Available Online: 27 Aug 2024
  • In this paper, a rapid and wide dynamic non-uniformity correction algorithm is proposed for the requirement of continuous change of integration time in infrared radiation measurement system. The algorithm considers the impact of integration time effect and stray radiation of the optical system. The experimental verification was conducted by employing cooled mid-wave infrared radiation characteristic measurement system with a 25 mm aperture. The correction efficiency of the classical algorithm and the proposed algorithm are compared. The results indicate that the proposed algorithm is 3.4 times more efficient than the traditional non-uniformity correction algorithm. On the above basis, we evaluate the effect of the two algorithms on the image correction using residual non-uniformity. Multiple integration times (0.6 ms, 3 ms and 3.5 ms) are used to simulate the continuous change of integration. The results indicate that the residual non-uniformity of the proposed algorithm is consistent and the image has been effectively corrected.

     

  • loading
  • [1]
    OCHS M, SCHULZ A, BAUER H J. High dynamic range infrared thermography by pixelwise radiometric self calibration[J]. Infrared Physics & Technology, 2010, 53(2): 112-119.
    [2]
    JI J K, YOON J R, CHO K. Nonuniformity correction scheme for an infrared camera including the background effect due to camera temperature variation[J]. Optical Engineering, 2000, 39(4): 936-940. doi: 10.1117/1.602452
    [3]
    霍晓江, 郭肇敏, 张志恒, 等. 基于积分时间的IRFPA非均匀性校正方法研究[J]. 红外与激光工程,2008,37(S2):604-607.

    HUO X J, GUO ZH M, ZHANG ZH H, et al. Research on nonuniformity correction of IRFPA based on integration time[J]. Infrared and Laser Engineering, 2008, 37(S2): 604-607. (in Chinese)
    [4]
    冷寒冰, 汤心溢, 彭鼎祥. 基于积分时间调整的红外焦平面阵列非均匀校正算法研究[J]. 红外与毫米波学报,2007,26(4):246-250.

    LENG H B, TANG X Y, PENG D X. Research on nonuniformity correction of IRFPA based on integral time adjust[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4): 246-250. (in Chinese)
    [5]
    陈世伟, 杨小冈, 张胜修, 等. 基于变积分时间的红外焦平面非均匀性校正算法研究[J]. 光子学报,2013,42(4):475-479. doi: 10.3788/gzxb20134204.0475

    CHEN SH W, YANG X G, ZHANG SH X, et al. Research on nonuniformity correction algorithm of IRFPA based on adjusting integral time[J]. Acta Photonica Sinica, 2013, 42(4): 475-479. (in Chinese) doi: 10.3788/gzxb20134204.0475
    [6]
    HUO L J, ZHOU D B, WANG D J, et al. Staircase-scene-based nonuniformity correction in aerial point target detection systems[J]. Applied Optics, 2016, 55(25): 7149-7156. doi: 10.1364/AO.55.007149
    [7]
    ZUO CH, CHEN Q, GU G H, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Optical Review, 2011, 18(2): 197-202. doi: 10.1007/s10043-011-0042-y
    [8]
    李周, 乔彦峰, 常松涛, 等. 宽动态范围红外辐射测量系统快速定标算法[J]. 红外与激光工程,2017,46(6):0617003. doi: 10.3788/IRLA201746.0617003

    LI ZH, QIAO Y F, CHANG S T, et al. High-speed calibration algorithm for wide dynamic range infrared radiometric system[J]. Infrared and Laser Engineering, 2017, 46(6): 0617003. (in Chinese) doi: 10.3788/IRLA201746.0617003
    [9]
    MOONEY J M, SHEPPARD F D, EWING W S, et al. Responsivity nonuniformity limited performance of infrared staring cameras[J]. Optical Engineering, 1989, 28(11): 281151.
    [10]
    李周. 地基靶场红外辐射特性测量系统宽动态辐射测量研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

    LI ZH. Research on ground-based infrared characteristics measurement systems in wide dynamic range radiometry[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018. (in Chinese)
    [11]
    JIN Y, JIANG J, ZHANG G J. Three-step nonuniformity correction for a highly dynamic intensified charge-coupled device star sensor[J]. Optics Communications, 2012, 285(7): 1753-1758. doi: 10.1016/j.optcom.2011.12.043
    [12]
    李周, 李铭扬, 余毅, 等. 基于二次修正提高宽动态红外辐射测量精度[J]. 红外与激光工程,2020,49(10):20200142.

    LI ZH, LI M Y, YU Y, et al. Improvement of wide dynamic infrared radiation measurement accuracy based on dual correction[J]. Infrared and Laser Engineering, 2020, 49(10): 20200142. (in Chinese)
    [13]
    CHANG S T, ZHANG Y Y, SUN ZH Y, et al. Method to remove the effect of ambient temperature on radiometric calibration[J]. Applied Optics, 2014, 53(27): 6274-6279. doi: 10.1364/AO.53.006274
    [14]
    MONTANARO M, LUNSFORD A, TESFAYE Z, et al. Radiometric calibration methodology of the Landsat 8 thermal infrared sensor[J]. Remote Sensing, 2014, 6(9): 8803-8821. doi: 10.3390/rs6098803
    [15]
    SUN ZH Y, CHANG S T, ZHU W. Radiometric calibration method for large aperture infrared system with broad dynamic range[J]. Applied Optics, 2015, 54(15): 4659-4666. doi: 10.1364/AO.54.004659
    [16]
    CAO Y P, TISSE C L. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera[J]. Optics Letters, 2014, 39(3): 646-648. doi: 10.1364/OL.39.000646
    [17]
    ZHOU D B, WANG D J, HUO L J, et al. Scene-based nonuniformity correction for airborne point target detection systems[J]. Optics Express, 2017, 25(13): 14210-14226. doi: 10.1364/OE.25.014210
    [18]
    NUGENT P W, SHAW J A, PUST N J. Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody[J]. Optical Engineering, 2014, 53(12): 123106. doi: 10.1117/1.OE.53.12.123106
    [19]
    WOLF A, REDLICH R, FIGUEROA M, et al. On-line nonuniformity and temperature compensation of uncooled IRFPAs using embedded digital hardware[J]. Proceedings of SPIE, 2013, 8868: 88680H. doi: 10.1117/12.2024241
    [20]
    TORRES S N, PEZOA J E, HAYAT M M. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form[J]. Applied Optics, 2003, 42(29): 5872-5881. doi: 10.1364/AO.42.005872
    [21]
    KIM S. Two-point correction and minimum filter-based nonuniformity correction for scan-based aerial infrared cameras[J]. Optical Engineering, 2012, 51(10): 106401. doi: 10.1117/1.OE.51.10.106401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views(118) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return