Volume 16 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
KUANG Hai, HUANG Zhen, XIONG Zhi-hua, LIU Li. A review of the effect of GaN-Based Micro-LED sidewall on external quantum efficiency and sidewall treatment techniques[J]. Chinese Optics, 2023, 16(6): 1305-1317. doi: 10.37188/CO.2023-0091
Citation: KUANG Hai, HUANG Zhen, XIONG Zhi-hua, LIU Li. A review of the effect of GaN-Based Micro-LED sidewall on external quantum efficiency and sidewall treatment techniques[J]. Chinese Optics, 2023, 16(6): 1305-1317. doi: 10.37188/CO.2023-0091

A review of the effect of GaN-Based Micro-LED sidewall on external quantum efficiency and sidewall treatment techniques

Funds:  Supported by Science and Technology Research Project of Jiangxi Education Department (No. GJJ2201338); National Natural Science Foundation of China (No. 12364013); Doctoral Research Foundation of Jiangxi Science and Technology Normal University (No. 2019BSQD020); Government Guides Local Science and Technology Development Funds(No. 2022ZDD03088)
More Information
  • Corresponding author: haizi411@126.com
  • Received Date: 15 May 2023
  • Rev Recd Date: 02 Jun 2023
  • Available Online: 26 Sep 2023
  • Micro-LEDs offers the benefits of high brightness, high response frequency, and low power consumption, making them an attractive candidate for future display technologies and Visible Light Communication (VLC) systems. Nonetheless, their low External Quantum Efficiency (EQE) currently impedes their scaled mass production and further applications. In order to break through the bottleneck of low EQE, we conducted an analysis of Micro-LED external quantum efficiency’s contributing factors. The influencing factors for EQE are analyzed. It is concluded that the carrier loss and non-radiative recombination caused by sidewall defects are the main reasons for the decrease in EQE. In addition, we summarized the impact of sidewall defects on carrier transport and composites, and we also reviewed the commonly used sidewall treatment technology and repair methods, and pointed out that the existing sidewall treatment methods are helpful but insufficient for improving EQE, and the mechanism of carrier interaction with sidewall defects is not very clear. It is suggested to carry out a thorough and systematic study on the types and distribution of sidewall defects, the mechanism of carrier and sidewall defects, and the defect repair mode in the sidewall treatment process. Finally, future development trends are projected. This paper offers design ideas and theoretical foundations to enhance the external quantum efficiency and accelerate the process of commercialization and mass production of Micro-LEDs.

     

  • loading
  • [1]
    JIN S X, LI J, LI J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631-633. doi: 10.1063/1.125841
    [2]
    蒋成伟, 沙源清, 袁佳磊, 等. 电致发光的完全悬空超薄硅衬底氮化镓基蓝光LED器件的制备与表征[J]. 中国光学,2021,14(1):153-162. doi: 10.37188/CO.2020-0148

    JIANG CH W, SHA Y Q, YUAN J L, et al. Fabrication and characterization of an LED based on a GaN-on-silicon platform with an ultra-thin freestanding membrane in the blue range[J]. Chinese Optics, 2021, 14(1): 153-162. (in Chinese) doi: 10.37188/CO.2020-0148
    [3]
    ZHANG K, LIU Y B, KWOK H S, et al. Investigation of electrical properties and reliability of GaN-based micro-LEDs[J]. Nanomaterials, 2020, 10(4): 689. doi: 10.3390/nano10040689
    [4]
    LIU ZH J, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light:Science & Applications, 2020, 9(1): 23.
    [5]
    WOODGATE G J, HARROLD J. P-101: Micro-optical systems for micro-LED displays[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 1559-1562. doi: 10.1002/sdtp.12285
    [6]
    YIN Y M, HU Z P, ALI M U, et al. Alleviating the crosstalk effect via a fine-moulded light-blocking matrix for colour-converted micro-LED display with a 122% NTSC gamut[J]. Light: Advanced Manufacturing, 2022, 3: 36.
    [7]
    殷录桥, 张雪松, 任开琳, 等. 考虑小尺寸效应的Micro-LED驱动结构设计[J]. 光学学报,2023,43(2):0223003.

    YIN L Q, ZHANG X S, REN K L, et al. Design of micro-LED driving structure considering small size effect[J]. Acta Optica Sinica, 2023, 43(2): 0223003. (in Chinese)
    [8]
    HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives[J]. Light:Science & Applications, 2020, 9(1): 105.
    [9]
    LEE H E, SHIN J H, PARK J H, et al. Micro light-emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 2019, 29(24): 1808075. doi: 10.1002/adfm.201808075
    [10]
    RAJBHANDARI S, MCKENDRY J J D, HERRNSDORF J, et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications[J]. Semiconductor Science and Technology, 2017, 32(2): 023001. doi: 10.1088/1361-6641/32/2/023001
    [11]
    XIONG J, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1: 3.
    [12]
    LEE V W, TWU N, KYMISSIS I. Micro-LED technologies and applications[J]. Information Display, 2016, 32(6): 16-23. doi: 10.1002/j.2637-496X.2016.tb00949.x
    [13]
    TEMPLIER F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems[J]. Journal of the Society for Information Display, 2016, 24(11): 669-675. doi: 10.1002/jsid.516
    [14]
    LIU Y T, LIAO K Y, LIN C L, et al. 66-2: Invited Paper: PixeLED display for transparent applications[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 874-875.
    [15]
    LI K H, FU W Y, CHOI H W. Chip-scale GaN integration[J]. Progress in Quantum Electronics, 2020, 70: 100247. doi: 10.1016/j.pquantelec.2020.100247
    [16]
    MONAVARIAN M, RASHIDI A, ARAGON A A, et al. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 2018, 112(4): 041104. doi: 10.1063/1.5019730
    [17]
    RASHIDI A, MONAVARIAN M, ARAGON A, et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication[J]. IEEE Photonics Technology Letters, 2017, 29(4): 381-384. doi: 10.1109/LPT.2017.2650681
    [18]
    ARVANITAKIS G N, BIAN R, MCKENDRY J J D, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal, 2020, 12(2): 7901210.
    [19]
    蒋府龙, 许非凡, 刘召军, 等. 氮化镓基Micro-LED显示技术研究进展[J]. 人工晶体学报,2020,49(11):2013-2023. doi: 10.3969/j.issn.1000-985X.2020.11.005

    JIANG F L, XU F F, LIU ZH J, et al. Development of GaN-based micro-LED display technology[J]. Journal of Synthetic Crystals, 2020, 49(11): 2013-2023. (in Chinese) doi: 10.3969/j.issn.1000-985X.2020.11.005
    [20]
    严子雯, 严群, 李典伦, 等. 高度集成的μLED显示技术研究进展[J]. 发光学报,2020,41(10):1309-1317. doi: 10.37188/CJL.20200191

    YAN Z W, YAN Q, LI D L, et al. Research progress of high integration density μLED display technology[J]. Chinese Journal of Luminescence, 2020, 41(10): 1309-1317. (in Chinese) doi: 10.37188/CJL.20200191
    [21]
    ZHOU X J, TIAN P F, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 2020, 71: 100263. doi: 10.1016/j.pquantelec.2020.100263
    [22]
    WU T ZH, SHER C W, LIN Y, et al. Mini-LED and micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 2018, 8(9): 1557. doi: 10.3390/app8091557
    [23]
    JIANG H X, LIN J Y. Nitride micro-LEDs and beyond-a decade progress review[J]. Optics Express, 2013, 21(S3): A475-A484. doi: 10.1364/OE.21.00A475
    [24]
    董冰, 佟首峰, 张鹏, 等. 20 m水下无线蓝光LED通信系统样机设计[J]. 中国光学,2021,14(6):1451-1458. doi: 10.37188/CO.2020-0190

    DONG B, TONG SH F, ZHANG P, et al. Design of a 20 m underwater wireless optical communication system based on blue LED[J]. Chinese Optics, 2021, 14(6): 1451-1458. (in Chinese) doi: 10.37188/CO.2020-0190
    [25]
    CHENG D, WANG Q, LIU Y, et al. Design and manufacture AR head-mounted displays: A review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
    [26]
    PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150.
    [27]
    YUSUKE S, KAZUO S, Daisuke B, et al. Holographic augmented reality display with conical holographic optical element for wide viewing zone[J]. Light: Advanced Manufacturing, 2022, 3(1): 26-34.
    [28]
    BEMARD C K, MARIA P. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets[J]. Light: Advanced Manufacturing, 2022, 3(4): 771-801.
    [29]
    Global micro-LED market with covid-19 impact analysis by application (display (smartwatch, NTE device, smartphone and tablet, television, digital signage), lighting (general, automotive)), display panel size, vertical and region-forecast to 2027[EB/OL]. (2021-12)[2023-06-16].https://www.researchandmarkets.com/reports/5067415/global-micro-LED-market-with-covid-19-impact#pos-0.
    [30]
    JIANG H X, JIN S X, LI J, et al. III-nitride blue microdisplays[J]. Applied Physics Letters, 2001, 78(9): 1303-1305. doi: 10.1063/1.1351521
    [31]
    JIN S X, LI J, LIN J Y, et al. InGaN/GaN quantum well interconnected microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 77(20): 3236-3238. doi: 10.1063/1.1326479
    [32]
    ZHU G Q, LIU Y J, MING R, et al. Mass transfer, detection and repair technologies in micro-LED displays[J]. Science China Materials, 2022, 65(8): 2128-2153. doi: 10.1007/s40843-022-2110-2
    [33]
    HANG SH, CHUANG C M, ZHANG Y H, et al. A review on the low external quantum efficiency and the remedies for GaN-based micro-LEDs[J]. Journal of Physics D:Applied Physics, 2021, 54(15): 153002. doi: 10.1088/1361-6463/abd9a3
    [34]
    WIERER J J JR, TANSU N. III-nitride micro-LEDs for efficient emissive displays[J]. Laser & Photonics Reviews, 2019, 13(9): 1900141.
    [35]
    LU SH Q, LI J CH, HUANG K, et al. Designs of InGaN micro-LED structure for improving quantum efficiency at low current density[J]. Nanoscale Research Letters, 2021, 16(1): 99. doi: 10.1186/s11671-021-03557-4
    [36]
    VIREY E H, BARON N. 45-1: Status and prospects of microLED displays[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 593-596. doi: 10.1002/sdtp.12415
    [37]
    ZHANG SH N, ZHANG J L, GAO J D, et al. Efficient emission of InGaN-based light-emitting diodes: toward orange and red[J]. Photonics Research, 2020, 8(11): 1671-1675. doi: 10.1364/PRJ.402555
    [38]
    ZHANG L, OU F, CHONG W C, et al. Wafer-scale monolithic hybrid integration of Si-based IC and III-V epi-layers-A mass manufacturable approach for active matrix micro-LED micro-displays[J]. Journal of the Society for Information Display, 2018, 26(3): 137-145. doi: 10.1002/jsid.649
    [39]
    JUNG T, CHOI J H, JANG S H, et al. 32-1: Invited Paper: Review of micro-light-emitting-diode technology for micro-display applications[J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 442-446. doi: 10.1002/sdtp.12951
    [40]
    COK R S, MEITL M, ROTZOLL R, et al. Inorganic light-emitting diode displays using micro-transfer printing[J]. Journal of the Society for Information Display, 2017, 25(10): 589-609. doi: 10.1002/jsid.610
    [41]
    CORBETT B, LOI R, ZHOU W D, et al. Transfer print techniques for heterogeneous integration of photonic components[J]. Progress in Quantum Electronics, 2017, 52: 1-17. doi: 10.1016/j.pquantelec.2017.01.001
    [42]
    KOU J Q, SHEN C C, SHAO H, et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 2019, 27(12): A643-A653. doi: 10.1364/OE.27.00A643
    [43]
    HWANG D, MUGHAL A, PYNN C D, et al. Sustained high external quantum efficiency in ultrasmall blue III-nitride micro-LEDs[J]. Applied Physics Express, 2017, 10(3): 032101. doi: 10.7567/APEX.10.032101
    [44]
    BULASHEVICH K A, KARPOV S Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(6): 480-484. doi: 10.1002/pssr.201600059
    [45]
    TIAN P F, MCKENDRY J J D, GONG ZH, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes[J]. Applied Physics Letters, 2012, 101(23): 231110. doi: 10.1063/1.4769835
    [46]
    ZHAO CH, NG T K, PRABASWARA A, et al. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination[J]. Nanoscale, 2015, 7(40): 16658-16665. doi: 10.1039/C5NR03448E
    [47]
    OLIVIER F, TIRANO S, DUPRÉ L, et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application[J]. Journal of Luminescence, 2017, 191: 112-116. doi: 10.1016/j.jlumin.2016.09.052
    [48]
    KONOPLEV S S, BULASHEVICH K A, KARPOV S Y. From large-size to micro-LEDs: scaling trends revealed by modeling[J]. Physica Status Solidi (A), 2018, 215(10): 1700508. doi: 10.1002/pssa.201700508
    [49]
    江风益, 刘军林, 王立, 等. 硅衬底高光效GaN基蓝色发光二极管[J]. 中国科学:物理学 力学 天文学,2015,45(6):067302.

    JIANG F Y, LIU J L, WANG L, et al. High optical efficiency GaN based blue LED on silicon substrate[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(6): 067302. (in Chinese)
    [50]
    CHOI H W, JEON C W, DAWSON M D, et al. Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes[J]. Journal of Applied Physics, 2003, 93(10): 5978-5982. doi: 10.1063/1.1567803
    [51]
    ZHANG Y Y, GUO E Q, LI ZH, et al. Light extraction efficiency improvement by curved GaN sidewalls in InGaN-based light-emitting diodes[J]. IEEE Photonics Technology Letters, 2012, 24(4): 243-245. doi: 10.1109/LPT.2011.2177251
    [52]
    KARPOV S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review[J]. Optical and Quantum Electronics, 2015, 47(6): 1293-1303. doi: 10.1007/s11082-014-0042-9
    [53]
    OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and auger non-radiative recombination in GaN based LEDs: a size effect study[J]. Applied Physics Letters, 2017, 111(2): 022104. doi: 10.1063/1.4993741
    [54]
    WIERER J J JR, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J]. Laser & Photonics Reviews, 2013, 7(6): 963-993.
    [55]
    LIU A CH, SINGH K J, HUANG Y M, et al. Increase in the efficiency of III-nitride micro-LEDs: atomic-layer deposition and etching[J]. IEEE Nanotechnology Magazine, 2021, 15(3): 18-34. doi: 10.1109/MNANO.2021.3066393
    [56]
    CHU CH SH, TIAN K K, ZHANG Y H, et al. Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes[J]. Physica Status Solidi (A), 2019, 216(4): 1800815. doi: 10.1002/pssa.201800815
    [57]
    ZHANG Z H, ZHANG Y H, BI W G, et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates[J]. Physica Status Solidi (A), 2016, 213(12): 3078-3102. doi: 10.1002/pssa.201600281
    [58]
    PEARTON S J. Characterization of damage in electron cyclotron resonance plasma etched compound semiconductors[J]. Applied Surface Science, 1997, 117-118: 597-604. doi: 10.1016/S0169-4332(97)80149-3
    [59]
    LEE J M, HUH C, KIM D J, et al. Dry-etch damage and its recovery in InGaN/GaN multi-quantum-well light-emitting diodes[J]. Semiconductor Science and Technology, 2003, 18(6): 530-534. doi: 10.1088/0268-1242/18/6/323
    [60]
    BOUSSADI Y, ROCHAT N, BARNES J P, et al. Investigation of sidewall damage induced by reactive ion etching on AlGaInP mesa for micro-LED application[J]. Journal of Luminescence, 2021, 234: 117937. doi: 10.1016/j.jlumin.2021.117937
    [61]
    TIAN W Y, LI J H. Size-dependent optical-electrical characteristics of blue GaN/InGaN micro-light-emitting diodes[J]. Applied Optics, 2020, 59(29): 9225-9232. doi: 10.1364/AO.405572
    [62]
    WONG M S, HWANG D, ALHASSAN A I, et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition[J]. Optics Express, 2018, 26(16): 21324-21331. doi: 10.1364/OE.26.021324
    [63]
    JIANG F L, HYUN B R, ZHANG Y, et al. Role of intrinsic surface states in efficiency attenuation of GaN-based micro-light-emitting-diodes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(2): 2000487. doi: 10.1002/pssr.202000487
    [64]
    LEE D H, LEE J H, PARK J S, et al. Improving the leakage characteristics and efficiency of GaN-based micro-light-emitting diode with optimized passivation[J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055001. doi: 10.1149/2162-8777/ab915d
    [65]
    DING K, AVRUTIN V, IZYUMSKAYA N, et al. Micro-LEDs, a manufacturability perspective[J]. Applied Sciences, 2019, 9(6): 1206. doi: 10.3390/app9061206
    [66]
    王玮东, 楚春双, 张丹扬, 等. 俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响[J]. 发光学报,2021,42(7):897-903. doi: 10.37188/CJL.20210102

    WANG W D, CHU CH SH, ZHANG D Y, et al. Impact of auger recombination, electron leakage and hole injection on efficiency droop for DUV LEDs[J]. Chinese Journal of Luminescence, 2021, 42(7): 897-903. (in Chinese) doi: 10.37188/CJL.20210102
    [67]
    JIA X T, ZHOU Y G, LIU B, et al. A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications[J]. Materials Research Express, 2019, 6(10): 105915. doi: 10.1088/2053-1591/ab3f7b
    [68]
    HERRNSDORF J, MCKENDRY J J D, ZHANG SH L, et al. Active-matrix GaN micro light-emitting diode display with unprecedented brightness[J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1918-1925. doi: 10.1109/TED.2015.2416915
    [69]
    CHANG L, YEH Y W, HANG SH, et al. Alternative strategy to reduce surface recombination for InGaN/GaN micro-light-emitting diodes-thinning the quantum barriers to manage the current spreading[J]. Nanoscale Research Letters, 2020, 15(1): 160. doi: 10.1186/s11671-020-03372-3
    [70]
    LIU SH G, HAN S C, XU CH CH, et al. Enhanced photoelectric performance of GaN-based micro-LEDs by ion implantation[J]. Optical Materials, 2021, 121: 111579. doi: 10.1016/j.optmat.2021.111579
    [71]
    CORFDIR P, LEWIS R B, MARQUARDT O, et al. Exciton recombination at crystal-phase quantum rings in GaAs/In x Ga1− x As core/multishell nanowires[J]. Applied Physics Letters, 2016, 109(8): 082107. doi: 10.1063/1.4961245
    [72]
    YANG Y, CAO X A. Removing Plasma-induced sidewall damage in GaN-based light-emitting diodes by annealing and wet chemical treatments[J]. Journal of Vacuum Science & Technology B, 2009, 27(6): 2337-2341.
    [73]
    CAO X A, CHO H, PEARTON S J, et al. Depth and thermal stability of dry etch damage in GaN schottky diodes[J]. Applied Physics Letters, 1999, 75(2): 232-234. doi: 10.1063/1.124332
    [74]
    JUNG B O, LEE W, KIM J, et al. Enhancement in external quantum efficiency of AlGaInP red μ-LED using chemical solution treatment process[J]. Scientific Reports, 2021, 11(1): 4535. doi: 10.1038/s41598-021-83933-3
    [75]
    WONG M S, NAKAMURA S, DENBAARS S P. Review-progress in high performance III-nitride micro-light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 2019, 9(1): 015012.
    [76]
    YANG C M, KIM D S, LEE S G, et al. Improvement in electrical and optical performances of GaN-based LED with SiO2/Al2O3 double dielectric stack layer[J]. IEEE Electron Device Letters, 2012, 33(4): 564-566. doi: 10.1109/LED.2012.2185675
    [77]
    YANG C M, KIM D S, PARK Y S, et al. Enhancement in light extraction efficiency of GaN-based light-emitting diodes using double dielectric surface passivation[J]. Optics and Photonics Journal, 2012, 2(3): 185-192. doi: 10.4236/opj.2012.23028
    [78]
    LEY R T, SMITH J M, WONG M S, et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation[J]. Applied Physics Letters, 2020, 116(25): 251104. doi: 10.1063/5.0011651
    [79]
    SON K S, CHOI D L, LEE H N, et al. The interfacial reaction between ITO and silicon nitride deposited by PECVD in fringe field switching device[J]. Current Applied Physics, 2002, 2(3): 229-232. doi: 10.1016/S1567-1739(02)00092-5
    [80]
    GUENTHER G, SCHIERNING G, THEISSMANN R, et al. Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties[J]. Journal of Applied Physics, 2008, 104(3): 034501. doi: 10.1063/1.2958323
    [81]
    HUANG S W, SHEN C C, WU T ZH, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer[J]. Photonics Research, 2019, 7(4): 416-422. doi: 10.1364/PRJ.7.000416
    [82]
    KUANG H, TAN D Q, HE W, et al. Oxidation behavior of multilayer hard coatings (TiCN/Al2O3/TiN) in process of recycling coated multicomponent hardmetal scrap[J]. Materials, 2018, 11(10): 1796. doi: 10.3390/ma11101796
    [83]
    KUANG H, TAN D Q, HE W, et al. Mechanism of multi-layer composite coatings in the zinc process of recycling coated WC-Co cemented-carbide scrap[J]. Materiali in Tehnologije, 2017, 51(6): 997-1003. doi: 10.17222/mit.2017.049
    [84]
    WONG M S, LEE C, MYERS D J, et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation[J]. Applied Physics Express, 2019, 12(9): 097004. doi: 10.7567/1882-0786/ab3949
    [85]
    王伟, 赵甜甜, 刘强, 等. Mini/Micro LED巨量转移技术研究与发展现状[J]. 光学 精密工程,2023,31(2):183-199. doi: 10.37188/OPE.20233102.0183

    WANG W, ZHAO T T, LIU Q, et al. Research and development status of Mini/Micro LED mass transfer technology[J]. Optics and Precision Engineering, 2023, 31(2): 183-199. (in Chinese) doi: 10.37188/OPE.20233102.0183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(825) PDF downloads(243) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return