Volume 18 Issue 3
May  2025
Turn off MathJax
Article Contents
LIU Zhi, JIANG Qing-fang, LIU Shu-tong, TIAN Shao-qian, ZHU Ling-yun, LIU Xian-zhu, YU Jia-xin, ZHAO Jian-tong, YAO Hai-feng, DONG Ke-yan. Research progress of space laser communication networking technology[J]. Chinese Optics, 2025, 18(3): 429-451. doi: 10.37188/CO.2023-0140
Citation: LIU Zhi, JIANG Qing-fang, LIU Shu-tong, TIAN Shao-qian, ZHU Ling-yun, LIU Xian-zhu, YU Jia-xin, ZHAO Jian-tong, YAO Hai-feng, DONG Ke-yan. Research progress of space laser communication networking technology[J]. Chinese Optics, 2025, 18(3): 429-451. doi: 10.37188/CO.2023-0140

Research progress of space laser communication networking technology

cstr: 32171.14.CO.2023-0140
Funds:  Supported by Ye Qisun Science Foundation of National Natural Science Foundation of China (No. U2141231); Youth Foundation of National Natural Science Foundation of China (No. 62105042)
More Information
  • Corresponding author: liuzhi@cust.edu.cn
  • Received Date: 18 Aug 2023
  • Rev Recd Date: 26 Nov 2023
  • Available Online: 05 Feb 2024
  • Laser communication utilizes light waves as the transmission medium. It offers many advantages, including high data rates, expansive bandwidth, compactness, robust interference resistance, and superior confidentiality. It has the critical capability to enable high-speed transmission and secure operation of space information networks. Prominent research institutions have committed to studying a series of challenges that need to be solved in the process of networking laser communication technology, including point-to-multipoint simultaneous laser communication, all-optical switching and forwarding of multi-channel signals within nodes, node dynamic random access, and network topology design. Numerous demonstration and verification experiments have been conducted, with a subset of these research results finding practical applications. Based on the analysis and discussion of space laser communication networking technology, this paper summarizes the development of laser communication networking technology both domestically and internationally, focusing on the application of laser communication networking technology in the fields of satellite constellations, satellite relays, and aviation networks. Furthermore, it presents a review of pertinent domestic research methodologies, experimental validations, and technical solutions. Finally, it predicts the development trend of laser communication networking technology and applications.

     

  • loading
  • [1]
    姜会林, 安岩, 张雅琳, 等. 空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(3):207-217.

    JIANG H L, AN Y, ZHANG Y L, et al. Analysis of the status Quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT& C Technology, 2015, 34(3): 207-217. (in Chinese).
    [2]
    HEMMATI H. Deep Space Optical Communications[M]. Hoboken: John Wiley & Sons, 2006.
    [3]
    KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96.
    [4]
    HEMMATI H, BISWAS A, DJORDJEVIC I B. Deep-space optical communications: future perspectives and applications[J]. Proceedings of the IEEE, 2011, 99(11): 2020-2039. doi: 10.1109/JPROC.2011.2160609
    [5]
    THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: the robot that won the DARPA Grand Challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147
    [6]
    SUN L, DU Q H. Physical layer security with its applications in 5G networks: a review[J]. China Communications, 2017, 14(12): 1-14. doi: 10.1109/CC.2017.8246483
    [7]
    RADHAKRISHNAN R, EDMONSON W W, AFGHAH F, et al. Survey of inter-satellite communication for small satellite systems: physical layer to network layer view[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2442-2473.
    [8]
    BILGI M, YUKSEL M. Multi-element free-space-optical spherical structures with intermittent connectivity patterns[C]. Proceedings of the IEEE INFOCOM Workshops 2008, IEEE, 2008: 1-4.
    [9]
    VELAZCO J E, GRIFFIN J, WERNICKE D, et al. High data rate inter-satellite omnidirectional optical communicator[C]. Proceedings of the 32nd Annual AIAA/USU, 2018: 354-2305.
    [10]
    高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
    [11]
    SEARCY P, MATSUMORI B A. Five advantages of managed optical communications array (MOCA) technology over other Lasercomm approaches[J]. Proceedings of SPIE, 2021, 11678: 116780Y.
    [12]
    李全超. 基于万向节的机载高精度光电平台机构研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    LI Q CH. Research on mechanism of aerial high-precision optoelectronic platform based on universal joint[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2022. (in Chinese).
    [13]
    YOU Q, CHEN D G, XIAO X, et al. 10 Gb/s free space optical interconnect with broadcasting capability enabled by a silicon integrated optical phased array[J]. Chinese Optics Letters, 2021, 19(12): 120602. doi: 10.3788/COL202119.120602
    [14]
    HAN R L, SUN J F, HOU P P, et al. Multi-dimensional and large-sized optical phased array for space laser communication[J]. Optics Express, 2022, 30(4): 5026-5037. doi: 10.1364/OE.447351
    [15]
    李盈祉. 硅基光学相控阵芯片的研制及应用研究[D]. 长春: 吉林大学, 2023.

    LI Y ZH. Research and application of silicon-based optical phased array chip[D]. Changchun: Jilin University, 2023. (in Chinese).
    [16]
    许剑华, 汪相如, 黄子强, 等. 基于液晶光学相控阵的空间激光通信PID跟踪方法[J]. 激光与光电子学进展,2017,54(2):021202.

    XU J H, WANG X R, HUANG Z Q, et al. PID tracking method of space laser communication based on liquid crystal optical phased array[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021202. (in Chinese).
    [17]
    曹汉, 张士元, 穆全全, 等. 基于光控取向技术的液晶光阀系统[J]. 长春理工大学学报(自然科学版),2021,44(3):10-14.

    CAO H, ZHANG SH Y, MU Q Q, et al. Liquid crystal light valve system based on photoalignment[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(3): 10-14. (in Chinese).
    [18]
    SEARCY P, MATSUMORI B A. MOCA technology and product update with analytical results[J]. Proceedings of SPIE, 2022, 11993: 1199303.
    [19]
    PRESBY H M, TYSON J A. Point-to-multipoint free-space wireless optical communication system: US, 6445496B1[P]. 2002-09-03.
    [20]
    SPARROLD S W, UPTON E L, OKOROGU A O. Free space point-to-multipoint optical communication system and apparatus: US, 6912360B1[P]. 2005-06-28.
    [21]
    史蒂芬·G·兰伯特. 自由空间光通信网络及用于中继节点的方法: 美国, 106341184A[P]. 2017-01-18.

    LAMBERT S G. Free space optical communications network and method for relay nodes: US, 106341184A[P]. 2017-01-18. (in Chinese).
    [22]
    M·D·马可夫斯基, G·D·科尔曼, W·J·小斯尔卡科, 等. 用于自由空间光通信的激光继电器: 美国, 105284064A[P]. 2016-01-27.

    MARKOVSKI M D, COLEMAN G D, SIERKACZKO W J, et al. Laser relay for free space optical communications: US, 105284064A[P]. 2016-01-27. (in Chinese).
    [23]
    江伦, 胡源, 王超, 等. 一点对多点同时空间激光通信光学系统研究[J]. 光学学报,2016,36(5):0506001. doi: 10.3788/AOS201636.0506001

    JIANG L, HU Y, WANG CH, et al. Optical system in one-point to multi-point simultaneous space laser communications[J]. Acta Optica Sinica, 2016, 36(5): 0506001. (in Chinese). doi: 10.3788/AOS201636.0506001
    [24]
    姜会林, 胡源, 宋延嵩, 等. 空间激光通信组网光端机技术研究[J]. 航天返回与遥感,2011,32(5):52-59. doi: 10.3969/j.issn.1009-8518.2011.05.013

    JIANG H L, HU Y, SONG Y S, et al. Research on space laser communication network[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 52-59. (in Chinese). doi: 10.3969/j.issn.1009-8518.2011.05.013
    [25]
    姜会林, 胡源, 丁莹, 等. 空间激光通信组网光学原理研究[J]. 光学学报,2012,32(10):1006003. doi: 10.3788/AOS201232.1006003

    JIANG H L, HU Y, DING Y, et al. Optical principle research of space laser communication network[J]. Acta Optica Sinica, 2012, 32(10): 1006003. (in Chinese). doi: 10.3788/AOS201232.1006003
    [26]
    郭鸿儒. 基于液晶光学相控阵的多用户捕跟方法研究[D]. 成都: 电子科技大学, 2019.

    GOU H R. Multi-user acquisition tracking method based on liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese).
    [27]
    陈帅. 基于码分多址的多信标光单探测器同时识别技术研究[D]. 长春理工大学, 2024.

    CHEN SH. Research on Simultaneous Recognition Technology of Multiple Beacon Light Single Detector Based on Code Division Multiple Access[D].Changchun University of Science and Technology, 2024. (in Chinese).
    [28]
    HUANG X N, SUH Y, DUAN T, et al. Simultaneous wavelength and format conversions based on the polarization-insensitive FWM in free-space optical communication network[J]. IEEE Photonics Journal, 2019, 11(1): 6500210.
    [29]
    郏帅威, 汪伟, 谢小平, 等. 空间激光通信网络中的全光数据合路技术研究[J]. 遥测遥控,2022,43(4):70-79. doi: 10.12347/j.ycyk.20211227001

    JIA SH W, WANG W, XIE X P, et al. Research on the all-optical data aggregation technology in the space laser communication network[J]. Journal of Telemetry, Tracking and Command, 2022, 43(4): 70-79. (in Chinese). doi: 10.12347/j.ycyk.20211227001
    [30]
    陆红强, 汪伟, 黄新宁, 等. 下一代空间激光骨干网络全光处理技术[J]. 遥测遥控,2022,43(6):56-63. doi: 10.12347/j.ycyk.20220318001

    LU H Q, WANG W, HUANG X N, et al. All-optical processing techniques for next-generation laser-based space backbone-networks[J]. Journal of Telemetry, Tracking and Command, 2022, 43(6): 56-63. (in Chinese). doi: 10.12347/j.ycyk.20220318001
    [31]
    孟佳成, 谢宁波, 白兆峰, 等. 面向卫星互联网的星载光交换技术[J]. 天地一体化信息网络,2022,3(2):47-55.

    MENG J CH, XIE N B, BAI ZH F, et al. Spaceborne optical switching technology for satellite internet[J]. Space- Integrated- Ground Information Networks, 2022, 3(2): 47-55. (in Chinese).
    [32]
    中国科学院. 西安光机所星载光交换技术成功在轨验证[EB/OL]. (2023-11-08). https://www.cas.cn/syky/202310/t20231008_4973365.shtml.

    Chinese Academy of Sciences. Xi'an institute of optics and mechanics successfully validates on-orbit optical switching technology[EB/OL]. (2023-11-08). https://www.cas.cn/syky/202310/t20231008_4973365.shtml. (in Chinese)
    [33]
    付强, 姜会林, 王晓曼, 等. 空间激光通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125.

    FU Q, JIANG H L, WANG X M, et al. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2): 116-125. (in Chinese).
    [34]
    高铎瑞, 谢壮, 马榕, 等. 卫星激光通信发展现状与趋势分析(特邀)[J]. 光子学报,2021,50(4):0406001.

    GAO D R, XIE ZH, MA R, et al. Development current status and trend analysis of satellite laser communication (invited)[J]. Acta Photonica Sinica, 2021, 50(4): 0406001. (in Chinese).
    [35]
    杨成武, 谌明, 刘向南, 等. 小卫星激光通信终端技术现状与发展趋势[J]. 遥测遥控,2021,42(3):1-7.

    YANG CH W, CHEN M, LIU X N, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 1-7. (in Chinese).
    [36]
    HEINE F, SÁNCHEZ-TERCERO A, MARTIN-PIMENTEL P, et al. In orbit perfomance of tesat LCTs[J]. Proceedings of SPIE, 2019, 10910: 109100U.
    [37]
    HAAN H, SIEMENS C. Airborne optical communication terminal: first successful link from Tenerife to the GEO Alphasat[J]. Proceedings of SPIE, 2019, 11133: 1113306.
    [38]
    ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5 U CubeSat: OCSD program[J]. Proceedings of SPIE, 2019, 11180: 111800J.
    [39]
    郑运强, 刘欢, 孟佳成, 等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程,2022,51(6):20210475. doi: 10.3788/IRLA20210475

    ZHENG Y Q, LIU H, MENG J CH, et al. Development status, trend and key technologies of air-based laser communication[J]. Infrared and Laser Engineering, 2022, 51(6): 20210475. (in Chinese). doi: 10.3788/IRLA20210475
    [40]
    PULLIAM J, ZAMBRE Y, KARMARKAR A, et al. TSAT network architecture[C]. Proceedings of 2008 IEEE Military Communications Conference, IEEE, 2008: 1-7.
    [41]
    ZHI H, JIANG X J, WANG J F. Multicolour photometry of LEO mega-constellations Starlink and OneWeb[J]. Monthly Notices of the Royal Astronomical Society, 2024, 530(4): 5006-5015. doi: 10.1093/mnras/stae693
    [42]
    RAINBOW J. SpaceX launches OneWeb Gen 2 technology demonstrator[EB/OL]. (2023-08-01). https://spacenews.com/spacex-launches-oneweb-gen-2-technology-demonstrator/.
    [43]
    HAUSCHILDT H, ELIA C, JONES A, et al. ESAs ScyLight programme: activities and status of the high throughput optical network "HydRON"[J]. Proceedings of SPIE, 2019, 11180: 111800G.
    [44]
    VASKO C A, ARAPOGLOU P D, ACAR G, et al. Optical high-speed data network in space-an update on HydRON's system concept[C]. Proceedings of 2022 IEEE International Conference on Space Optical Systems and Applications, IEEE, 2022: 7-13.
    [45]
    SDA. Space development agency next-generation space architecture request for information (SDA-SN-19-0001)[R]. Washington: Defense Pentagon, 2019.
    [46]
    许连杰, 刘亮亮, 庞鸿锋, 等. 美国“扩散型作战人员太空架构”系统建设进展及关键技术分析[J]. 中国航天,2023(9):47-54.

    XU L J, LIU L L, PANG H F, et al. Development and key technology analysis of US proliferated warfighter space architecture[J]. Aerospace China, 2023(9): 47-54. (in Chinese).
    [47]
    DARPA. DARPA’s Mandrake 2 satellites: communicating at the speed of light[EB/OL]. (2023-08-02). https://breakingdefense.com/2022/08/darpas-mandrake-2-satellites-communicating-at-the-speed-of-light/.
    [48]
    SDA. SDA layered network of military satellites now known as “proliferated warfighter space architecture”[EB/OL]. (2023-08-02). https://www.sda.mil/sda-layered-network-of-military-satellites-now-known-as-proliferated-warfighter-space-architecture/.
    [49]
    United States Government. Space development agency successfully launches tranche 0 satellites[EB/OL]. (2023-08-02). https://www.defense.gov/News/Releases/Release/Article/3348974/space-development-agency-successfully-launches-tranche-0-satellites/.
    [50]
    U. S. Department of Defense. Space development agency makes awards for 126 satellites to build tranche 1 transport layer[EB/OL]. (2023-08-02). https://www.defense.gov/News/Releases/Release/Article/2948229/space-development-agency-makes-awards-for-126-satellites-to-build-tranche-1-tra/.
    [51]
    ERWIN S. Space Development Agency issues draft solicitation for 100 satellites[EB/OL]. (2023-08-02). https://spacenews.com/space-development-agency-issues-draft-solicitation-for-100-satellites/.
    [52]
    ERWIN S. DARPA selects companies for inter-satellite laser communications project[EB/OL]. (2023-08-02). https://spacenews.com/darpa-selects-companies-for-inter-satellite-laser-communications-project/.
    [53]
    科技日报. 基于激光通信互联 遥感小卫星星座建成[EB/OL]. (2023-08-02). https://www.xinhuanet.com/tech/20230116/46f74613b1e94a80af9091ded3ac8cf6/c.html.

    Science and Technology Daily. Remote sensing small satellite constellation established based on laser communication interconnection[EB/OL]. (2023-08-02. https://www.xinhuanet.com/tech/20230116/46f74613b1e94a80af9091ded3ac8cf6/c.html. (in Chinese).
    [54]
    Laser Light Communications. HALO communications system[EB/OL]. (2023-08-02). https://proceedings.kaconf.com/papers/2016/clq/2_3.pdf.
    [55]
    PULTAROVA T. Starlink satellites: facts, tracking and impact on astronomy[EB/OL]. (2025-03-03). https://www.space.com/spacex-starlink-satellites.html.
    [56]
    CHAUDHRY A U, YANIKOMEROGLU H. Laser inter-satellite links in a starlink constellation[J]. arXiv: 2103.00056, 2021.
    [57]
    POSCH M. Starlink’s inter-satellite laser links are setting new record with 42 million GB per day[EB/OL]. (2024-03-03). https://hackaday.com/2024/02/05/starlinks-inter-satellite-laser-links-are-setting-new-record-with-42-million-gb-per-day/.
    [58]
    RIGOLLE M. LeoSat—a new satellite paradigm[EB/OL]. (2023-08-05). http://www.satmagazine.com/story.php?number=1365559905.
    [59]
    JEWETT R. Mynaric to roll out next-generation optical link terminal[EB/OL]. (2023-08-05). https://www.satellitetoday.com/innovation/2021/08/26/mynaric-to-roll-out-next-generation-optical-link-terminal/.
    [60]
    JEWETT R. Mynaric to supply Raytheon with optical terminals for SDA program[EB/OL]. (2023-08-05). https://www.satellitetoday.com/government-military/2023/06/22/mynaric-to-supply-raytheon-with-optical-terminals-for-sda-program/.
    [61]
    ERWIN S. Boeing unveils WGS-11 design with new military payload[EB/OL]. (2025-03-04). https://spacenews.com/boeing-unveils-wgs-11-design-with-new-military-payload/.
    [62]
    HEINE F, MARTIN-PIMENTEL P, KAEMPFNER H, et al. Alphasat and sentinel 1A, the first 100 links[C]. Proceedings of 2015 IEEE International Conference on Space Optical Systems and Applications, IEEE, 2015: 1-4.
    [63]
    RIDGEWAY B. Laser communications relay demonstration (LCRD) overview[EB/OL]. (2023-08-06). https://www.nasa.gov/directorates/stmd/tech-demo-missions-program/laser-communications-relay-demonstration-lcrd-overview/.
    [64]
    董全睿, 陈涛, 高世杰, 等. 星载激光通信技术研究进展[J]. 中国光学,2019,12(6):1260-1270. doi: 10.3788/co.20191206.1260

    DONG Q R, CHEN T, GAO SH J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270. (in Chinese). doi: 10.3788/co.20191206.1260
    [65]
    ISRAEL D J, EDWARDS B L, STAREN J W. Laser Communications Relay Demonstration (LCRD) update and the path towards optical relay operations[C]. Proceedings of 2017 IEEE Aerospace Conference, IEEE, 2017: 1-6.
    [66]
    GILLMER S R, SMEATON C V, BURNSIDE J W, et al. Demonstration of a modular, scalable, laser communication terminal for human spaceflight missions[J]. Proceedings of SPIE, 2021, 11816: 118160E.
    [67]
    SEAS A, ROBINSON B, SHIH T, et al. Optical communications systems for NASA's human space flight missions[J]. Proceedings of SPIE, 2019, 11180: 111800H.
    [68]
    ISRAEL D J, SHAW H. Next-generation NASA earth-orbiting relay satellites: fusing optical and microwave communications[C]. Proceedings of 2018 IEEE Aerospace Conference, IEEE, 2018: 1-7.
    [69]
    PARK E A, CORNWELL D, ISRAEL D. NASA's next generation ≥ 100 Gbps optical communications relay[C]. Proceedings of 2019 IEEE Aerospace Conference, IEEE, 2019: 1-9.
    [70]
    WITTING M, HAUSCHILDT H, MURRELL A, et al. Status of the European data relay satellite system[C]. Proceedings of 2012 International Conference on Space Optical Systems and Applications, 2012: 9-12.
    [71]
    PERDIGUES J M, SODNIK Z, HAUSCHILDT H, et al. The ESA's optical ground station for the EDRS-A LCT in-orbit test campaign: upgrades and test results[J]. Proceedings of SPIE, 2017, 10562: 105622V.
    [72]
    HILL J. Airbus to commence service on EDRS-C satellite[EB/OL]. (2023-08-06). https://www.satellitetoday.com/launch/2020/07/17/airbus-to-commence-service-on-edrs-c-satellite/.
    [73]
    JEWETT R. Inmarsat, addvalue debut inter-satellite data relay system linking LEO and GEO[EB/OL]. (2023-08-06). https://www.satellitetoday.com/mobility/2020/11/23/inmarsat-addvalue-debut-inter-satellite-data-relay-system-linking-leo-and-geo/.
    [74]
    ANDREWS L C, PHILLIPS R L, BAGLEY Z C, et al. Hybrid optical/radio frequency (RF) communications[M]//MAJUMDAR A K. Advanced Free Space Optics (FSO): A Systems Approach. New York: Springer, 2015.
    [75]
    YOUNG D W, HURT H H, SLUZ J E, et al. Development and demonstration of laser communications systems[J]. Johns Hopkins APL Technical Digest, 2015, 33(2): 122-138.
    [76]
    KUMAR K D, PONSEELAN A J, PRABHA D D, et al. A study on Google project loon-opportunities and challenges[J]. International Journal of Emerging Technology and Innovative Engineering, 2020, 6(3): 206-214.
    [77]
    NEWTON C. Facebook’s drone test flight ended with part of the wing snapping off[EB/OL]. (2023-08-07). https://www.theverge.com/2016/12/16/13983868/facebook-drone-crash-aquila-wing-failure-ntsb-report.
    [78]
    WU SH Q, LI SH Q, LIN Y X, et al. Performance analysis of hybrid FSO/RF transmission assisted airborne free-space optical communication system[J]. Journal of Communications and Information Networks, 2022, 7(3): 252-258. doi: 10.23919/JCIN.2022.9906939
    [79]
    赵尚宏, 魏军, 李勇军, 等. 航空光通信与网络技术[M]. 上海: 上海科学技术出版社, 2020.

    ZHAO SH H, WEI J, LI Y J, et al. Aviation Optical Communication and Networking Technology[M]. Shanghai: Shanghai Scientific and Technical Publishers, 2020. (in Chinese).
    [80]
    SHEKHAR S, BOGAERTS W, CHROSTOWSKI L, et al. Roadmapping the next generation of silicon photonics[J]. Nature Communications, 2024, 15(1): 751. doi: 10.1038/s41467-024-44750-0
    [81]
    ERWIN S. Mynaric selected by DARPA to design next-generation optical terminals[EB/OL]. (2023-08-07). https://spacenews.com/mynaric-selected-by-darpa-to-design-next-generation-optical-terminals/.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article views(789) PDF downloads(322) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return