Volume 17 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
SHI Hao-dong, XU Jia-wei, ZHANG Jian, WU Hong-bo, WANG Chao, LIU Zhuang, ZHAN Jun-tong, LI Ying-chao, FU Qiang. Active polarization imaging method under strong light background[J]. Chinese Optics, 2024, 17(5): 1075-1086. doi: 10.37188/CO.2023-0151
Citation: SHI Hao-dong, XU Jia-wei, ZHANG Jian, WU Hong-bo, WANG Chao, LIU Zhuang, ZHAN Jun-tong, LI Ying-chao, FU Qiang. Active polarization imaging method under strong light background[J]. Chinese Optics, 2024, 17(5): 1075-1086. doi: 10.37188/CO.2023-0151

Active polarization imaging method under strong light background

Funds:  Supported by the Jilin Scientific and Technological Development Program (No. YDZJ202301ZYTS417)
More Information
  • Corresponding author: xjw759785402@163.com
  • Received Date: 30 Aug 2023
  • Rev Recd Date: 12 Sep 2023
  • Available Online: 08 Dec 2023
  • In this study, we propose an active polarization imaging method based on laser illumination to tackle the issue of low target detection contrast in strong light backgrounds, which is a challenge in conventional photoelectric detection. Through constructing a laser incident bidirectional reflection distribution model, a laser incident polarization bidirectional reflection distribution model and a target surface polarization model of laser illumination, the coupling relationship between the polarization characteristics of three typical target materials and the divergence angle of a laser beam is analyzed. Backlight observation experiments are conducted in a controlled darkroom to verify the impact of the scattering angle of the laser beam on the polarization characteristics of the target. The experimental results show an 86.11% increase in target contrast for active polarization imaging under strong light background compared to traditional passive intensity imaging. Additionally, the visible polarization characteristics of different target materials vary with different divergence angles, and the line polarization of metallic materials is higher than that of non-metallic materials. The experimental results are in good agreement with the theoretical analysis. The outdoor solar backlight observation experiment verifies the applicability of the research method in high-intensity light and long-distance settings. This study can lay a theoretical foundation for improving accurate target perception under a strong light background.

     

  • loading
  • [1]
    徐淼, 史浩东, 王超, 等. 空间目标多维度探测与激光通信一体化技术研究[J]. 中国激光,2021,48(12):1206002. doi: 10.3788/CJL202148.1206002

    XU M, SHI H D, WANG CH, et al. Technology for integrating space object multidimensional detection and laser communication[J]. Chinese Journal of Lasers, 2021, 48(12): 1206002. (in Chinese). doi: 10.3788/CJL202148.1206002
    [2]
    付强, 史浩东, 王超, 等. 天基空间碎片光电探测新技术研究[J]. 空间碎片研究,2020,20(4):49-55.

    FU Q, SHI H D, WANG CH, et al. Research on new technology of photoelectric detection for space-based space debris[J]. Space Debris Research, 2020, 20(4): 49-55. (in Chinese).
    [3]
    张海峰, 张忠萍, 秦思, 等. 激光主动照亮地影中空间目标实验研究[J]. 中国激光,2014,41(S1):s108003.

    ZHANG H F, ZHANG ZH P, QIN S, et al. Experimental study on laser active illumination to space targets within the shadow of earth[J]. Chinese Journal of Lasers, 2014, 41(S1): s108003. (in Chinese).
    [4]
    LI H SH. Research on space target detection ability calculation method and spectral filtering technology in sky-screen's photoelectric system[J]. Microwave and Optical Technology Letters, 2016, 58(5): 1035-1041. doi: 10.1002/mop.29723
    [5]
    鲁梅, 陈忠碧. 基于梯度特征的弱小目标检测[J]. 激光与红外,2022,52(1):129-135.

    LU M, CHEN ZH B. Dim target detection based on gradient feature[J]. Laser & Infrared, 2022, 52(1): 129-135. (in Chinese).
    [6]
    李岩松, 赵慧洁, 李娜, 等. 基于中红外偏振的海面太阳耀光背景下的目标探测[J]. 中国激光,2022,49(19):1910004. doi: 10.3788/CJL202249.1910004

    LI Y S, ZHAO H J, LI N, et al. Detection of marine targets covered in sun glint based on mid-infrared polarization[J]. Chinese Journal of Lasers, 2022, 49(19): 1910004. (in Chinese). doi: 10.3788/CJL202249.1910004
    [7]
    郭庭, 张彬, 顾乃庭, 等. 偏振哈特曼波前探测技术研究[J]. 光电工程,2021,48(7):210076.

    GUO T, ZHANG B, GU N T, et al. Research on polarization hartmann wavefront detection technology[J]. Opto-Electronic Engineering, 2021, 48(7): 210076. (in Chinese).
    [8]
    于洁, 巩蕾, 王海斌, 等. 伪装涂层红外偏振模型优化及辐射特性研究[J]. 中国激光,2023,50(13):1304007. doi: 10.3788/CJL221016

    YU J, GONG L, WANG H B, et al. Optimization of infrared polarization model and study of radiation characteristics of camouflaged coatings[J]. Chinese Journal of Lasers, 2023, 50(13): 1304007. (in Chinese). doi: 10.3788/CJL221016
    [9]
    柳祎, 史浩东, 姜会林, 等. 粗糙目标表面红外偏振特性研究[J]. 中国光学,2020,13(3):459-471.

    LIU Y, SHI H D, JIANG H L, et al. Infrared polarization properties of targets with rough surface[J]. Chinese Optics, 2020, 13(3): 459-471. (in Chinese).
    [10]
    高明, 宋冲, 巩蕾. 基于偏振双向反射分布函数的粗糙面光散射偏振特性研究[J]. 中国激光,2013,40(12):1213002. doi: 10.3788/CJL201340.1213002

    GAO M, SONG CH, GONG L. Analysis of polarization characteristics about rough surface light scattering based on polarized bidirectional reflectance distribution function[J]. Chinese Journal of Lasers, 2013, 40(12): 1213002. (in Chinese). doi: 10.3788/CJL201340.1213002
    [11]
    凌军, 张拴勤, 吴坚业, 等. 伪装涂层激光反射特性检测与实验研究[J]. 中国激光,2012,39(3):0308005. doi: 10.3788/CJL201239.0308005

    LING J, ZHANG SH Q, WU J Y, et al. Measurement and experimental study of laser reflectance characteristics of camouflage coat[J]. Chinese Journal of Lasers, 2012, 39(3): 0308005. (in Chinese). doi: 10.3788/CJL201239.0308005
    [12]
    陆君, 李季波. 常见自然地物对1.06 μm激光反射特性研究[J]. 光电技术应用,2015,30(5):71-73.

    LU J, LI J B. Research on 1.06 μm laser reflectance characteristic for common natural features[J]. Electro-Optic Technology Application, 2015, 30(5): 71-73. (in Chinese).
    [13]
    赵若曼, 陈少捷, 张川. 空间目标激光雷达散射波实验室模拟技术[J]. 激光杂志,2021,42(3):91-95.

    ZHAO R M, CHEN SH J, ZHANG CH. Laboratory simulation technology of Lidar scattering wave of space target[J]. Laser Journal, 2021, 42(3): 91-95. (in Chinese).
    [14]
    汪杰君, 王鹏, 王方原, 等. 材料表面偏振双向反射分布函数模型修正[J]. 光子学报,2019,48(1):0126001. doi: 10.3788/gzxb20194801.0126001

    WANG J J, WANG P, WANG F Y, et al. Modified model of polarized bidirectional reflectance distribution function on material surface[J]. Acta Photonica Sinica, 2019, 48(1): 0126001. (in Chinese). doi: 10.3788/gzxb20194801.0126001
    [15]
    张卫国. 海面太阳耀光背景下的偏振探测技术[J]. 中国光学,2018,11(2):231-236. doi: 10.3788/co.20181102.0231

    ZHANG W G. Application of polarization detection technology under the background of sun flare on sea surface[J]. Chinese Optics, 2018, 11(2): 231-236. (in Chinese). doi: 10.3788/co.20181102.0231
    [16]
    王新涛, 郑建华, 李明涛. 小行星天基光学监测信噪比分析[J]. 光学 精密工程,2021,29(12):2763-2773. doi: 10.37188/OPE.20212912.2763

    WANG X T, ZHENG J H, LI M T. Analysis of signal-to-noise ratio for space-based optical surveillance of asteroids[J]. Optics and Precision Engineering, 2021, 29(12): 2763-2773. (in Chinese). doi: 10.37188/OPE.20212912.2763
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views(412) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return