Turn off MathJax
Article Contents
PAN Li, HE Yang, MA Li-guo, JI Yan-hui, LIU Jin-dai, CHEN Fei. Influence of flow channel structure on characteristics of LD pumped flowing-gas rubidium vapor laser[J]. Chinese Optics. doi: 10.37188/CO.2023-0174
Citation: PAN Li, HE Yang, MA Li-guo, JI Yan-hui, LIU Jin-dai, CHEN Fei. Influence of flow channel structure on characteristics of LD pumped flowing-gas rubidium vapor laser[J]. Chinese Optics. doi: 10.37188/CO.2023-0174

Influence of flow channel structure on characteristics of LD pumped flowing-gas rubidium vapor laser

doi: 10.37188/CO.2023-0174
Funds:  National Natural Science Foundation of China (No. 62005274, No. 61975203); Fund Project of the State Key Laboratory of Laser and Material Interaction (No. SKLLIM2012); Youth Innovation Promotion Association of CAS (No. 2022216)
More Information
  • Corresponding author: feichenny@126.com
  • Received Date: 08 Oct 2023
  • Accepted Date: 05 Dec 2023
  • Available Online: 14 Dec 2023
  • In order to study the influence of the gas flow channel structure on the output performance of the flowing-gas diode pumped alkali laser (FDPAL), this article combines the FDPAL theoretical model with the FDPAL mid-gas heat transfer, fluid mechanics, and laser dynamics process using side pumping. Rb vapor FDPAL (Rb-FDPAL) was the simulation object, and the impacts of the gas flow direction, the cross-sectional area, and the runner's shape on the Rb-FDPAL’s output performance were analyzed. The results show that the adoption of the horizontal flow method, by increasing the cross-sectional area of the flow channel and setting a masonry structure as the connection between the gas flow channel and the steam pool, effectively suppresses the vortex in the vapor, increases the gas flow rate, and decreases the thermal effect of the steam pool. Rb-FDPAL's laser output power and slope efficiency are higher, and the simulation results are consistent with the experiment.

     

  • loading
  • [1]
    KRUPKE W F, BEACH R J, KANZ V K, et al. New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper)[J]. Proceedings of SPIE, 2004, 5448: 7-17. doi: 10.1117/12.547954
    [2]
    KRUPKE W F. Diode pumped alkali lasers (DPALs)—A review (rev1)[J]. Progress in Quantum Electronics, 2012, 36(1): 4-28. doi: 10.1016/j.pquantelec.2011.09.001
    [3]
    季艳慧, 何洋, 万浩华, 等. 高功率循环流动型半导体泵浦碱金属蒸汽激光器研究进展(特邀)[J]. 红外与激光工程,2020,49(12):20201080. doi: 10.3788/IRLA20201080

    JI Y H, HE Y, WAN H H, et al. Research progress on the high power flowing-gas circulation diode-pumped alkali vapor laser (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201080. (in Chinese). doi: 10.3788/IRLA20201080
    [4]
    陈毅, 孙俊杰, 于晶华, 等. 大能量碟片激光多通放大器腔体设计研究综述[J]. 中国光学(中英文),2023,16(5):996-1009. doi: 10.37188/CO.2023-0009

    CHEN Y, SUN J J, YU J H, et al. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J]. Chinese Optics, 2023, 16(5): 996-1009. (in Chinese). doi: 10.37188/CO.2023-0009
    [5]
    张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese). doi: 10.37188/CO.2021-0216
    [6]
    徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180

    XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese). doi: 10.37188/CO.2020-0180
    [7]
    ZHDANOV B V, EHRENREICH T, KNIZE R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042
    [8]
    BOGACHEV A V, GARANIN S G, DUDOV A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734
    [9]
    GAO F, CHEN F, XIE J J, et al. Review on diode-pumped alkali vapor laser[J]. Optik, 2013, 124(20): 4353-4358. doi: 10.1016/j.ijleo.2013.01.061
    [10]
    ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Power degradation due to thermal effects in Potassium Diode Pumped Alkali Laser[J]. Optics Communications, 2015, 341: 97-100. doi: 10.1016/j.optcom.2014.12.021
    [11]
    WAICHMAN K, BARMASHENKO B D, ROSENWAKS S. Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL[J]. Journal of the Optical Society of America B, 2017, 34(2): 279-286. doi: 10.1364/JOSAB.34.000279
    [12]
    YACOBY E, WAICHMAN K, SADOT O, et al. Modeling of flowing-gas diode-pumped potassium laser with different pumping geometries: scaling up and controlling beam quality[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1000107.
    [13]
    PIZA G A, STALNAKER D M, GUILD E M, et al. Advancements in flowing diode pumped alkali lasers[J]. Proceedings of SPIE, 2016, 9729: 972902.
    [14]
    YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies[J]. Optics Express, 2018, 26(14): 17814-17819. doi: 10.1364/OE.26.017814
    [15]
    BARMASHENKO B D, ROSENWAKS S, WAICHMAN K. Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling[J]. Proceedings of SPIE, 2014, 8962: 89620C.
    [16]
    SHEN B L, HUANG J H, XU X Q, et al. Modeling of steady-state temperature distribution in diode-pumped alkali vapor lasers: analysis of the experimental results[J]. IEEE Journal of Quantum Electronics, 2017, 53(3): 1500207.
    [17]
    GAVRIELIDES A, SCHLIE L A, LOPER R D, et al. Unstable resonators for high power diode pumped alkali lasers[J]. Proceedings of SPIE, 2017, 10090: 100901M.
    [18]
    HUANG J H, SU CH Y, XU X Q, et al. Theoretical simulations on pulsed exciplex pumped Rb vapor laser[J]. Optics & Laser Technology, 2021, 141: 107165.
    [19]
    YANG J, AN G F, GUO J W, et al. Study on a gas flowing diode pumped cesium laser[J]. Proceedings of SPIE, 2021, 11890: 118900N.
    [20]
    徐艳, 陈飞, 谢冀江, 等. 缓冲气体对碱金属蒸汽激光器工作特性的影响[J]. 红外与激光工程,2015,44(2):455-460. doi: 10.3969/j.issn.1007-2276.2015.02.010

    XU Y, CHEN F, XIE J J, et al. Influence of buffer gas on performance of alkali vapor laser[J]. Infrared and Laser Engineering, 2015, 44(2): 455-460. (in Chinese). doi: 10.3969/j.issn.1007-2276.2015.02.010
    [21]
    ROTONDARO M D, PERRAM G P. Role of rotational-energy defect in collisional transfer between the 5 2P1/2, 3/2 levels in rubidium[J]. Physical Review A, 1998, 57(5): 4045-4048. doi: 10.1103/PhysRevA.57.4045
    [22]
    LEMMON E W. Thermophysical properties of fluid systems[J]. NIST Chemistry WebBook, 2010. (查阅网上资料, 未找到对应的卷期页码信息, 请确认) .
    [23]
    SHU H, BASS M. Three-dimensional computer model for simulating realistic solid-state lasers[J]. Applied Optics, 2007, 46(23): 5687-5697. doi: 10.1364/AO.46.005687
    [24]
    WAICHMAN K, BARMASHENKO B D, ROSENWAKS S. CFD DPAL modeling for various schemes of flow configurations[J]. Proceedings of SPIE, 2014, 9251: 92510U. doi: 10.1117/12.2067019
    [25]
    YAMAMOTO T, YAMAMOTO F, ENDO M, et al. Experimental investigation of gas flow type DPAL[J]. Proceedings of SPIE, 2017, 10254: 102540S.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article views(104) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return