Turn off MathJax
Article Contents
ZHOU Chen, MA Liu-hao, WANG Yu. Measurement of methane concentration with wide dynamic range using heterodyne phase-sensitive dispersion spectroscopy[J]. Chinese Optics. doi: 10.37188/CO.2023-0177
Citation: ZHOU Chen, MA Liu-hao, WANG Yu. Measurement of methane concentration with wide dynamic range using heterodyne phase-sensitive dispersion spectroscopy[J]. Chinese Optics. doi: 10.37188/CO.2023-0177

Measurement of methane concentration with wide dynamic range using heterodyne phase-sensitive dispersion spectroscopy

doi: 10.37188/CO.2023-0177
Funds:  Supported by National Natural Science Foundation of China (No. 52106221); State Key Laboratory of Applied Optics (No. SKLA02022001A05)
More Information
  • Corresponding author: liuhaoma@whut.edu.cn
  • Received Date: 10 Oct 2023
  • Rev Recd Date: 15 Dec 2023
  • Available Online: 06 Feb 2024
  • Objective 

    This paper describes the development of dual-sideband beat-suppressed heterodyne phase-sensitive dispersive spectroscopy (HPSDS) for sensitive detection of trace gases across a wide dynamic range, explores the operational characteristics of the electro-optic modulator, and explores bias voltage control methods under sideband suppression mode. The dispersion phase spectral profiles and the corresponding signal-to-noise ratios in both suppression and non-suppression modes were compared before a comprehensive evaluation of the detection performance.

    Method 

    An HPSDS-based detection system was developed based on a near-infrared distributed feedback laser and an electro-optic modulator (EOM). The suppression of the dual-sideband beat was achieved by exploring and analyzing the optimal operational range of the EOM, leading to the optimization of dispersion phase signals with increased amplitude and high signal-to-noise ratio. The dispersion phase signals under typical high-frequency (1.2 GHz) intensity modulation were recorded for different standard methane/nitrogen mixtures. The relationship between the peak-to-peak values of the dispersion phase signals and the varied gas concentrations was then summarized. Meanwhile, wavelength modulation spectroscopy (WMS) experiments were conducted; subsequently, the HPSDS and WMS techniques’ performances were compared in terms of linearity, detection dynamic range, and immunity to optical power fluctuations; finally, the HPSDS-based system's performance was validated under a wide dynamic range and rapid time response was verified by measuring different concentrations of standard gases.

    Result 

    Experimental results indicate that the HPSDS technique exhibits high linearity (R2 = 0.9999), a wide dynamic range (38.5 ppm to 40%), and remarkable immunity to optical power fluctuations.

    Conclusion 

    The dual-sideband-beat-suppression-HPSDS-based methane sensor developed in this study shows great potential for uses involving wide dynamic range detection and on-site practical trace gas detection.

     

  • loading
  • [1]
    FAROOQ A, ALQUAITY A B S, RAZA M, et al. Laser sensors for energy systems and process industries: perspectives and directions[J]. Progress in Energy and Combustion Science, 2022, 91: 100997. doi: 10.1016/j.pecs.2022.100997
    [2]
    王倩, 蔡伟伟, 陶波. 基于层析成像的激光强度分布测量方法[J]. 中国光学,2023,16(4):743-752. doi: 10.37188/CO.2022-0016

    WANG Q, CAI W W, TAO B. Laser intensity distribution measurement method based on tomographic imaging[J]. Chinese Optics, 2023, 16(4): 743-752. (in Chinese). doi: 10.37188/CO.2022-0016
    [3]
    任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学,2023,2023,16(6):1273-1292.

    REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 2023,16(6): 1273-1292. (in Chinese).
    [4]
    刘成员, 于江玉, 李奉翠, 等. 拉曼光谱测试技术在可充电铝离子电池储能机理的研究进展[J]. 应用化学,2023,40(10):1347-1358.

    LIU CH Y, YU J Y, LI F C, et al. Research progress of Raman spectroscopy technique in energy storage mechanism of rechargeable aluminum-ion batteries[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1347-1358. (in Chinese).
    [5]
    程军杰, 曹智, 杨灿然, 等. 便携式远程激光诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.

    CHENG J J, CAO ZH, YANG C R, et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese).
    [6]
    MA L H, WANG W, ZHOU CH, et al. A laser absorption sensor for fuel slip monitoring in high-humidity flue gases from ammonia combustion[J]. Measurement Science and Technology, 2023, 34(9): 094005. doi: 10.1088/1361-6501/acd94b
    [7]
    ZHANG H J, WU T, WU Q, et al. Methane detection with a near-infrared heterodyne phase-sensitive dispersion spectrometer at a stronger frequency modulation using direct injection-current dithering[J]. Optics Express, 2023, 31(15): 25070-25081. doi: 10.1364/OE.495581
    [8]
    LI Q, JI F Y, WANG W, et al. A mid-infrared laser absorption sensor for calibration-free measurement of nitric oxide in laminar premixed methane/ammonia cofired flames[J]. Microwave and Optical Technology Letters, 2024, 66(1): e33815. doi: 10.1002/mop.33815
    [9]
    PELÉ R, BREQUIGNY P, BELLETTRE J, et al. Performances and pollutant emissions of spark ignition engine using direct injection for blends of ethanol/ammonia and pure ammonia[J]. International Journal of Engine Research, 2024, 25(2): 320-333. doi: 10.1177/14680874231170661
    [10]
    杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学,2023,16(1):151-157. doi: 10.37188/CO.2022-0029

    YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029
    [11]
    杨天悦, 宫廷, 郭古青, 等. 氨气高精度激光光谱检测装置的设计及实现[J]. 中国光学,2023,16(5):1129-1136. doi: 10.37188/CO.2023-0023

    YANG T Y, GONG T, GUO G Q, et al. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J]. Chinese Optics, 2023, 16(5): 1129-1136. (in Chinese). doi: 10.37188/CO.2023-0023
    [12]
    黄慧, 周亦辰, 彭宇, 等. 基于量子级联激光器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.

    HUANG H, ZHOU Y CH, PENG Y, et al. Feasibility study of breath diagnosis in Helicobacter pylori based on quantum cascade laser mid-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese).
    [13]
    胡晓, 倪世传, 杨娜娜, 等. 用于氢过氧自由基光谱和动力学分析的腔衰荡光谱装置[J]. 分析化学,2023,51(6):994-1002.

    HU X, NI SH CH, YANG N N, et al. A cavity ring-down spectrum instrument for analysis of HO2 radical spectroscopy and kinetics[J]. Chinese Journal of Analytical Chemistry, 2023, 51(6): 994-1002. (in Chinese).
    [14]
    聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光,2018,45(9):911001. doi: 10.3788/CJL201845.0911001

    NIE W, KAN R F, YANG CH G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 911001. (in Chinese). doi: 10.3788/CJL201845.0911001
    [15]
    朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学,2017,10(4):455-461. doi: 10.3788/co.20171004.0455

    ZHU X R, LU W Y, RAO Y ZH, et al. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455-461. (in Chinese). doi: 10.3788/co.20171004.0455
    [16]
    房超, 乔顺达, 何应, 等. T字头石英音叉的设计及其气体传感性能[J]. 光学学报,2023,43(18):1899910. doi: 10.3788/AOS231163

    FANG CH, QIAO SH D, HE Y, et al. Design and sensing performance of t-shaped quartz tuning forks[J]. Acta Optica Sinica, 2023, 43(18): 1899910. doi: 10.3788/AOS231163
    [17]
    MA Y F, HE Y, TONG Y, et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 2018, 26(24): 32103-32110. doi: 10.1364/OE.26.032103
    [18]
    聂伟, 许振宇, 阚瑞峰, 等. 可调谐二极管激光吸收光谱技术测量低温流场水汽露点温度[J]. 光学 精密工程,2018,26(8):1862-1869. doi: 10.3788/OPE.20182608.1862

    NIE W, XU ZH Y, KAN R F, et al. Measurement of low water vapor dew-point temperature based on tunable diode laser absorption spectroscopy[J]. Optics and Precision Engineering, 2018, 26(8): 1862-1869. (in Chinese). doi: 10.3788/OPE.20182608.1862
    [19]
    臧益鹏, 许振宇, 夏晖晖, 等. 基于免标定波长调制技术的高温谱线参数测量方法[J]. 中国激光,2020,47(10):1011001. doi: 10.3788/CJL202047.1011001

    ZANG Y P, XU ZH Y, XIA H H, et al. Method for measuring high temperature spectral line parameters based on calibration-free wavelength modulation technology[J]. Chinese Journal of Lasers, 2020, 47(10): 1011001. (in Chinese). doi: 10.3788/CJL202047.1011001
    [20]
    RIEKER G B, JEFFRIES J B, HANSON R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 2009, 48(29): 5546-5560. doi: 10.1364/AO.48.005546
    [21]
    WYSOCKI G, WEIDMANN D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser[J]. Optics Express, 2010, 18(25): 26123-26140. doi: 10.1364/OE.18.026123
    [22]
    MARTÍN-MATEOS P, ACEDO P. Heterodyne phase-sensitive detection for calibration-free molecular dispersion spectroscopy[J]. Optics Express, 2014, 22(12): 15143-15153. doi: 10.1364/OE.22.015143
    [23]
    MARTíN-MATEOS P, HAYDEN J, ACEDO P, et al. Heterodyne phase-sensitive dispersion spectroscopy in the mid-infrared with a quantum cascade laser[J]. Analytical Chemistry, 2017, 89(11): 5916-5922. doi: 10.1021/acs.analchem.7b00303
    [24]
    PAUL S, MARTÍN-MATEOS P, HEERMEIER N, et al. Multispecies heterodyne phase sensitive dispersion spectroscopy over 80 nm using a MEMS-VCSEL[J]. ACS Photonics, 2017, 4(11): 2664-2668. doi: 10.1021/acsphotonics.7b00704
    [25]
    DING W W, SUN L Q, YI L Y, et al. Dual-sideband heterodyne of dispersion spectroscopy based on phase-sensitive detection[J]. Applied Optics, 2016, 55(31): 8698-8704. doi: 10.1364/AO.55.008698
    [26]
    丁武文, 孙利群. 相敏式激光啁啾色散光谱技术在高吸收度情况下的应用[J]. 物理学报,2017,66(12):120601. doi: 10.7498/aps.66.120601

    DING W W, SUN L Q. Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions[J]. Acta Physica Sinica, 2017, 66(12): 120601. (in Chinese). doi: 10.7498/aps.66.120601
    [27]
    MA L H, WANG ZH, CHEONG K P, et al. Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1329-1336. doi: 10.1016/j.proci.2018.06.184
    [28]
    MA L H, WANG ZH, CHEONG K P, et al. Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy[J]. Applied Physics B, 2018, 124(6): 117. doi: 10.1007/s00340-018-6990-1
    [29]
    DUAN K, HU M Y, JI Y B, et al. High-temperature ammonia detection using heterodyne phase-sensitive dispersion spectroscopy at 9.06 μm[J]. Fuel, 2022, 325: 124852. doi: 10.1016/j.fuel.2022.124852
    [30]
    HU M Y, REN W. Wavelength-modulation dispersion spectroscopy of NO with heterodyne phase-sensitive detection[J]. Optics Letters, 2022, 47(11): 2899-2902. doi: 10.1364/OL.460042
    [31]
    LOU X T, WANG Y, DONG Y K. Multipoint dispersion spectroscopic gas sensing by optical FMCW interferometry[J]. Optics Letters, 2021, 46(23): 5950-5953. doi: 10.1364/OL.443126
    [32]
    TOLL J S. Causality and the dispersion relation: logical foundations[J]. Physical Review, 1956, 104(6): 1760-1770. doi: 10.1103/PhysRev.104.1760
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(111) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return