CHEN Xiang-xue, FU Zi-qin, WANG Feng-chao, CHEN Jin, YANG Jing. Terahertz band-stop filter with H-type structure[J]. Chinese Optics, 2024, 17(4): 757-763. doi: 10.37188/CO.2023-0179
Citation: CHEN Xiang-xue, FU Zi-qin, WANG Feng-chao, CHEN Jin, YANG Jing. Terahertz band-stop filter with H-type structure[J]. Chinese Optics, 2024, 17(4): 757-763. doi: 10.37188/CO.2023-0179

Terahertz band-stop filter with H-type structure

cstr: 32171.14.CO.2023-0179
Funds:  Supported by Collaborative Innovation Fund, Shanghai Institude of Technology (No. XTCX2020-12); Youth Science and Technology Talent Development Fund, Shanghai Institude of Technology (No. ZQ2022-6, No. ZQ2024-12)
More Information
  • Corresponding author: yangjingxqq@sit.edu.cn
  • Received Date: 11 Oct 2023
  • Rev Recd Date: 06 Nov 2023
  • Accepted Date: 13 Dec 2023
  • Available Online: 31 Jan 2024
  • In this paper, a terahertz band-stop filter based on a symmetrical H-type structure was designed, the continuous metal arms of which can flow current. By using electromagnetic simulation software CST Microwave Studio 2021, the filtering characteristics of the filter were studied, and the geometric parameters of the filter were determined by changing the arm length, period length and gap of double H. The results show that the filter can realize the tunable polarization properties. Under the y-polarization condition, the transmission spectrum has no obvious resonance peak in the range of 0.2−2.3 THz, but the intensity ranges from −15 dB to −3 dB. Under the x-polarization condition, a remarkably sharp dipole resonance valley occurs at 1.34 THz in the transmission spectrum, and the bandwidth and intensity are 0.15 THz and −30 dB, respectively. In order to verify the simulation results, the designed metamaterial filter was fabricated using micromachining technology, and the sample was tested by transmissed-terahertz time-domain spectroscopy (THz-TDS) system. The experiment results are in good agreement with the simulation results, which verifies the feasibility of this method.

     

  • [1]
    潘学聪, 姚泽瀚, 徐新龙, 等. 太赫兹波段超材料的制作、设计及应用[J]. 中国光学,2013,6(3):283-296.

    PAN X C, YAO Z H, XU X L, et al. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. (in Chinese).
    [2]
    姚建铨, 路洋, 张百钢, 等. THz辐射的研究和应用新进展[J]. 光电子·激光,2005,16(4):503-510.

    YAO J Q, LU Y, ZHANG B G, et al. New research progress of THz radiation[J]. Journal of Optoelectronics·Laser, 2005, 16(4): 503-510. (in Chinese).
    [3]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [4]
    LU X Y, VENKATESH S, SAEIDI H. A review on applications of integrated terahertz systems[J]. China Communications, 2021, 18(5): 175-201. doi: 10.23919/JCC.2021.05.011
    [5]
    WILLIAMS G P. Filling the THz gap—high power sources and applications[J]. Reports on Progress in Physics, 2006, 69(2): 301-326. doi: 10.1088/0034-4885/69/2/R01
    [6]
    闫海涛, 邓朝, 郭澜涛, 等. 太赫兹远距离快速扫描成像系统的设计[J]. 应用光学,2016,37(2):183-186. doi: 10.5768/JAO201637.0201006

    YAN H T, DENG CH, GUO L T, et al. Design of terahertz rapid standoff imaging system[J]. Journal of Applied Optics, 2016, 37(2): 183-186. (in Chinese). doi: 10.5768/JAO201637.0201006
    [7]
    GONG A P, QIU Y T, CHEN X W, et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 2020, 55(5): 418-438. doi: 10.1080/05704928.2019.1670202
    [8]
    胡其枫, 蔡健. 基于深度学习的太赫兹时域光谱识别研究[J]. 光谱学与光谱分析,2021,41(1):94-99.

    HU Q F, CAI J. Research of terahertz time-domain spectral identification based on deep learning[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 94-99. (in Chinese).
    [9]
    FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
    [10]
    张若雅, 朱巧芬, 张岩. 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报,2023,40(3):301-318. doi: 10.3969/j.issn.1007-5461.2023.03.002

    ZHANG R Y, ZHU Q F, ZHANG Y. Research progress of tunable terahertz metamaterial absorbers[J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318. (in Chinese). doi: 10.3969/j.issn.1007-5461.2023.03.002
    [11]
    CHEN ZH, CAI P G, WEN Q Y, et al. Graphene multi-frequency broadband and ultra-broadband terahertz absorber based on surface plasmon resonance[J]. Electronics, 2023(12): 2655.
    [12]
    凌芳, 孟庆龙, 黄人帅, 等. 温控太赫兹调制器多频带调制特性[J]. 光谱学与光谱分析,2017,37(5):1334-1338.

    LING F, MENG Q L, HUANG R SH, et al. The characteristics of thermally tunable multi-bands terahertz modulator[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1334-1338. (in Chinese).
    [13]
    KYOUNG J, JANG E Y, LIMA M D, et al. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10): 4227-4231. doi: 10.1021/nl202214y
    [14]
    董卓, 陈捷, 朱一帆, 等. 黑砷磷室温太赫兹探测器(英文)[J]. 中国光学,2021,14(1):182-195. doi: 10.37188/CO.2020-0175

    DONG ZH, CHEN J, ZHU Y F, et al. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. (in Chinese). doi: 10.37188/CO.2020-0175
    [15]
    肖尚辉, 刘简, 胡波, 等. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报,2023,45(2):718-724.

    XIAO SH H, LIU J, HU B, et al. Linearization of terahertz transmitter based on low sampling rate DAC and ADC[J]. Journal of Electronics & Information Technology, 2023, 45(2): 718-724. (in Chinese).
    [16]
    VALUŠIS G, LISAUSKAS A, YUAN H, et al. Roadmap of terahertz imaging 2021[J]. Sensors, 2021, 21(12): 4092. doi: 10.3390/s21124092
    [17]
    YEH T T, GENOVESI S, MONORCHIO A, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials[J]. Optics Express, 2012, 20(7): 7580-7589. doi: 10.1364/OE.20.007580
    [18]
    ZHU M, LEE C. A design of terahertz broadband filters and its effect in eliminating asymmetric characteristics in device structures[J]. Journal of Lightwave Technology, 2015, 33(15): 3280-3285. doi: 10.1109/JLT.2015.2432017
    [19]
    王俊林, 张斌珍, 段俊萍, 等. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报,2017,37(10):1016001. doi: 10.3788/AOS201737.1016001

    WANG J L, ZHANG B ZH, DUAN J P, et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001. (in Chinese). doi: 10.3788/AOS201737.1016001
    [20]
    KUMAR D, JAIN R, SHAHJAHAN, et al. Bandwidth enhancement of planar terahertz metasurfaces via overlapping of dipolar modes[J]. Plasmonics, 2020, 15(6): 1925-1934. doi: 10.1007/s11468-020-01222-7
    [21]
    高万, 王建扬, 吴倩楠. 基于双金属环的超材料太赫兹宽频带通滤波器的设计与研究[J]. 激光与光电子学进展,2021,58(5):0516001.

    GAO W, WANG J Y, WU Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic ring[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0516001. (in Chinese).
    [22]
    HUANG Y, OKATANI T, KANAMORI Y. Broadband stop filters for THz waves using H-shaped metamaterials with dual electronic-plasmonic functionality[J]. Japanese Journal of Applied Physics, 2022, 61(SD): SD1007. doi: 10.35848/1347-4065/ac55dd
    [23]
    TANG SH, HAN J N. Acoustic transmission characteristics based on H-type metamaterials[J]. IEEE Access, 2019, 7: 96125-96131. doi: 10.1109/ACCESS.2019.2929194
    [24]
    WANG K H, LI J SH, YAO J Q. Sensitive terahertz free space modulator using CsPbBr3 perovskite quantum dots–embedded metamaterial[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(5): 557-567. doi: 10.1007/s10762-020-00680-8
    [25]
    TANG CH, YANG J, WANG Y D, et al. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids[J]. Sensors and Actuators B:Chemical, 2021, 329: 129113. doi: 10.1016/j.snb.2020.129113
    [26]
    YANG J, TANG CH, WANG Y D, et al. The terahertz dynamics interfaces to ion–lipid interaction confined in phospholipid reverse micelles[J]. Chemical Communications, 2019, 55(100): 15141-15144. doi: 10.1039/C9CC07598D
  • Relative Articles

    [1]TAO Xing-yu, LIU Wen-jie, SUN Yue-hui, QIN Fei-fei, SONG Qing-e, ZHAO Ze-yu, LIU Li-juan, CHEN Tian-xiang, WANG Yun-cai. Noise figure measurement of terahertz mixer[J]. Chinese Optics, 2024, 17(4): 943-949. doi: 10.37188/CO.2023-0193
    [2]YANG Zhi-hu, FU Jia-hui, ZHANG Yu-ping, ZHANG Hui-yun. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics, 2023, 16(4): 816-823. doi: 10.37188/CO.2022-0208
    [3]LV Ting-ting, FU Tian-shu, LIU Dong-ming, SHI Jin-hui. Bandwidth-tunable terahertz metamaterial half-wave plate component[J]. Chinese Optics, 2023, 16(3): 701-714. doi: 10.37188/CO.2022-0198
    [4]CAO Bing-hua, ZHANG Yu-meng, FAN Meng-bao, SUN Feng-shan, LIU Lin. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 2022, 15(3): 405-417. doi: 10.37188/CO.2021-0198
    [5]LI Xiang-jun, MA Chan, YAN De-xian, QIU Guo-hua, ZHAO Yang, YANG Ji, GUO Shi-hui. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. doi: 10.37188/CO.2021-0197
    [6]FENG Qin-yin, QIU Guo-hua, YAN De-xian, Li Ji-ning, Li Xiang-jun. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 387-403. doi: 10.37188/CO.2021-0174
    [7]DONG Zhuo, CHEN Jie, ZHU Yi-fan, YANG Jie, WANG Zhong-chang, ZHANG Kai. Room-temperature terahertz photodetectors based on black arsenic-phosphorus[J]. Chinese Optics, 2021, 14(1): 182-195. doi: 10.37188/CO.2020-0175
    [8]YANG Qiu-jie, HE Zhi-ping, MI Zhong-liang. Diffraction characteristics analysis of multi-depth phase modulation grating in terahertz band[J]. Chinese Optics, 2020, 13(3): 605-615. doi: 10.3788/CO.2019-0147
    [9]XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
    [10]GREBENCHUKOV Alexander N, ZAITSEV Anton D, KHODZITSKY Mikhail K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166
    [11]GOMON Daniel, SEDYKH Egor, RODRÍGUEZ Sebastián, IDELFONSO Tafur Monroy, ZAITSEV Kirill, VOZIANOVA Anna, KHODZITSKY Mikhail. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 2018, 11(1): 47-59. doi: 10.3788/CO.20181101.0047
    [12]LI Jing, ZHANG Wen, MIAO Wei, SHI Sheng-cai. Development of ultra high sensitivity superconducting THz detectors[J]. Chinese Optics, 2017, 10(1): 122-130. doi: 10.3788/CO.20171001.0122
    [13]QIN Hua, HUANG Yong-dan, SUN Jian-dong, ZHANG Zhi-peng, YU Yao, LI Xiang, SUN Yun-fei. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chinese Optics, 2017, 10(1): 51-67. doi: 10.3788/CO.20171001.0051
    [14]SHI Jing, WANG Xin-ke, ZHENG Xian-hua, HE Jing-wen, WANG Sen, XIE Zhen-wei, CUI Ye, YE Jia-sheng, SUN Wen-feng, FENG Sheng-fei, HAN Peng, ZHANG Yan. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147. doi: 10.3788/CO.20171001.0131
    [15]ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
    [16]HU Wei-dong, JI Jin-jia, LIU Rui-ting, WANG Wen-qi, Leo P. LIGTHART. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656
    [17]E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J]. Chinese Optics, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
    [18]TAN Zhi-yong, WAN Wen-jian, LI Hua, CAO Jun-cheng. Progress in real-time imaging based on terahertz quantum-cascade lasers[J]. Chinese Optics, 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068
    [19]ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
    [20]PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.7 %FULLTEXT: 28.7 %META: 53.3 %META: 53.3 %PDF: 18.0 %PDF: 18.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.4 %其他: 7.4 %其他: 1.7 %其他: 1.7 %Seattle: 3.5 %Seattle: 3.5 %上海: 7.0 %上海: 7.0 %中卫: 0.4 %中卫: 0.4 %中山: 0.7 %中山: 0.7 %九江: 0.2 %九江: 0.2 %伊兹密尔: 0.4 %伊兹密尔: 0.4 %佛山: 0.4 %佛山: 0.4 %北京: 1.7 %北京: 1.7 %南京: 0.9 %南京: 0.9 %南昌: 0.2 %南昌: 0.2 %卡拉奇: 0.7 %卡拉奇: 0.7 %哈尔滨: 0.4 %哈尔滨: 0.4 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %安康: 0.9 %安康: 0.9 %宜昌: 0.2 %宜昌: 0.2 %宜春: 0.2 %宜春: 0.2 %广州: 2.2 %广州: 2.2 %成都: 1.3 %成都: 1.3 %扬州: 1.1 %扬州: 1.1 %无锡: 0.4 %无锡: 0.4 %昆明: 0.9 %昆明: 0.9 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.4 %杭州: 0.4 %桂林: 0.2 %桂林: 0.2 %武汉: 0.4 %武汉: 0.4 %江门: 0.2 %江门: 0.2 %泰安: 0.4 %泰安: 0.4 %济宁: 0.4 %济宁: 0.4 %海口: 0.4 %海口: 0.4 %深圳: 0.9 %深圳: 0.9 %温州: 0.2 %温州: 0.2 %漯河: 0.9 %漯河: 0.9 %白城: 0.2 %白城: 0.2 %盐湖城: 0.2 %盐湖城: 0.2 %石家庄: 0.4 %石家庄: 0.4 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %芝加哥: 3.0 %芝加哥: 3.0 %苏州: 0.7 %苏州: 0.7 %苏瀑: 0.4 %苏瀑: 0.4 %衡阳: 0.7 %衡阳: 0.7 %西宁: 6.5 %西宁: 6.5 %西安: 0.4 %西安: 0.4 %诺沃克: 12.0 %诺沃克: 12.0 %费利蒙: 0.2 %费利蒙: 0.2 %运城: 1.1 %运城: 1.1 %通化: 0.2 %通化: 0.2 %遵义: 0.4 %遵义: 0.4 %郑州: 0.7 %郑州: 0.7 %长春: 10.4 %长春: 10.4 %长沙: 0.4 %长沙: 0.4 %青岛: 1.1 %青岛: 1.1 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他Seattle上海中卫中山九江伊兹密尔佛山北京南京南昌卡拉奇哈尔滨大连天津太原安康宜昌宜春广州成都扬州无锡昆明朝阳杭州桂林武汉江门泰安济宁海口深圳温州漯河白城盐湖城石家庄绵阳芒廷维尤芝加哥苏州苏瀑衡阳西宁西安诺沃克费利蒙运城通化遵义郑州长春长沙青岛齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(244) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return