XUE Yi-meng, LIU Bing-cai, PAN Yong-qiang, FANG Xin-meng, TIAN Ai-ling, ZHANG Rui-xuan. Vortex phase-shifting digital holography for micro-optical element surface topography measurment[J]. Chinese Optics, 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180
Citation: XUE Yi-meng, LIU Bing-cai, PAN Yong-qiang, FANG Xin-meng, TIAN Ai-ling, ZHANG Rui-xuan. Vortex phase-shifting digital holography for micro-optical element surface topography measurment[J]. Chinese Optics, 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180

Vortex phase-shifting digital holography for micro-optical element surface topography measurment

cstr: 32171.14.CO.2023-0180
Funds:  Supported by Shaanxi Provincial Science and Technology Department Project (No. 2023KXJ-066); Shaanxi Province Education Department Project (No. 23JY034); Shaanxi Provincial Natural Science Basic Research Program Project (NO.2024JC-YBMS-523)
More Information
  • Corresponding author: pyq_867@163.com
  • Received Date: 11 Oct 2023
  • Rev Recd Date: 30 Oct 2023
  • Available Online: 20 Feb 2024
  • Non-destructive, non-contact phase-shifting digital holography technology has distinct advantages in identifying micro-optical components. As traditional phase-shifting digital holography technology requires fine control and cumbersome calibration of the phase shifter, furthermore, its optical path is susceptible to mechanical vibration interference, which reduces the quality of the holographically reproduced image. To solve the above problems, we propose a vortex phase-shifting digital holography for the micro-optical element surface measurement with the help of the special phase distribution of vortex light. The method utilizes a helical phase plate to modulate the vortex phase and introduce a high-precision phase shift. Based on the constructed vortex phase-shifting digital holographic microscopy experimental setup, the actual phase shifts between phase-shift interferograms were determined using the interferometric polarity method, the relationship between the rotation angle of the helical phase plate and the phase shift was calibrated, and the feasibility of the vortex phase shift was experimentally verified. Repeated measurement experiments were carried out on the micro-lens arrays, and the measurement results were compared with those of the ZYGO white light interferometer. The results indicate that a single micro-lens's average longitudinal vector height is 12.897 μm with an average relative error of 0.155%. The proposed method enables highly precise measurement of the surface topography of micro-optical elements. It offers the advantages of easy operation, high stability, and high accuracy.

     

  • [1]
    王丹艺, 薛常喜, 李闯, 等. 基于微透镜阵列的电子内窥镜光学系统设计[J]. 光学学报,2018,38(2):0222003. doi: 10.3788/AOS201838.0222003

    WANG D Y, XUE CH X, LI CH, et al. Design of electronic endoscope optical system based on microlens array[J]. Acta Optica Sinica, 2018, 38(2): 0222003. (in Chinese). doi: 10.3788/AOS201838.0222003
    [2]
    李恒, 邵永红, 王岩, 等. 基于微透镜阵列和振镜扫描的光谱分辨多焦点多光子显微技术[J]. 中国激光,2010,37(5):1240-1244. doi: 10.3788/CJL20103705.1240

    LI H, SHAO Y H, WANG Y, et al. Spectrally resolved multifocal multiphoton microscopy using microlens array and galvo mirror scanning[J]. Chinese Journal of Lasers, 2010, 37(5): 1240-1244. (in Chinese). doi: 10.3788/CJL20103705.1240
    [3]
    LIU G, SCOTT P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165. doi: 10.1364/JOSAA.4.000159
    [4]
    黄郑重, 曹良才. 面向高通量的多通道复用数字全息成像技术[J]. 中国光学(中英文),2022,15(6):1182-1193. doi: 10.37188/CO.2022-0070

    HUANG ZH Z, CAO L C. Multi-channel multiplexing digital holographic imaging for high throughput[J]. Chinese Optics, 2022, 15(6): 1182-1193. (in Chinese). doi: 10.37188/CO.2022-0070
    [5]
    满天龙, 万玉红, 菅孟静, 等. 面向生物样品三维成像的光干涉显微技术研究进展[J]. 中国激光,2022,49(15):1507202. doi: 10.3788/CJL202249.1507202

    MAN T L, WAN Y H, JIAN M J, et al. Research progress in optical interference microscopy toward three-dimensional imaging of biological samples[J]. Chinese Journal of Lasers, 2022, 49(15): 1507202. (in Chinese). doi: 10.3788/CJL202249.1507202
    [6]
    KUMAR M, PENSIA L, KUMAR R. Highly stable vibration measurements by common-path off-axis digital holography[J]. Optics and Lasers in Engineering, 2023, 163: 107452. doi: 10.1016/j.optlaseng.2022.107452
    [7]
    MACH M, PSOTA P, ŽÍDEK K, et al. On-chip digital holographic interferometry for measuring wavefront deformation in transparent samples[J]. Optics Express, 2023, 31(11): 17185-17200. doi: 10.1364/OE.486997
    [8]
    LIU B C, FENG D Q, FENG F, et al. Maximum a posteriori-based digital holographic microscopy for high-resolution phase reconstruction of a micro-lens array[J]. Optics Communications, 2020, 477: 126364. doi: 10.1016/j.optcom.2020.126364
    [9]
    XIA P, WANG Q H, RI SH E. Random phase-shifting digital holography based on a self-calibrated system[J]. Optics Express, 2020, 28(14): 19988-19996. doi: 10.1364/OE.395819
    [10]
    XIA P, RI SH E, INOUE T, et al. Dynamic phase measurement of a transparent object by parallel phase-shifting digital holography with dual polarization imaging cameras[J]. Optics and Lasers in Engineering, 2021, 141: 106583. doi: 10.1016/j.optlaseng.2021.106583
    [11]
    RODRIGUEZ-ZURITA G, MENESES-FABIAN C, TOTO-ARELLANO N I, et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms[J]. Optics Express, 2008, 16(11): 7806-7017. doi: 10.1364/OE.16.007806
    [12]
    CARRÉ P. Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures[J]. Metrologia, 1966, 2(1): 13-23. doi: 10.1088/0026-1394/2/1/005
    [13]
    NOBUKAWA T, MUROI T, KATANO Y, et al. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings[J]. Optics Letters, 2018, 43(8): 1698-1701. doi: 10.1364/OL.43.001698
    [14]
    石侠, 朱五凤, 袁斌, 等. 非相干光照明数字全息实验研究[J]. 中国激光,2015,42(12):1209003. doi: 10.3788/CJL201542.1209003

    SHI X, ZHU W F, YUAN B, et al. Experimental study of the incoherent digital holography[J]. Chinese Journal of Lasers, 2015, 42(12): 1209003. (in Chinese). doi: 10.3788/CJL201542.1209003
    [15]
    钱晓彤, 田爱玲, 刘丙才, 等. 基于液晶空间光调制器的相移数字全息显微测量系统精度分析[J]. 光子学报,2022,51(4):0409003. doi: 10.3788/gzxb20225104.0409003

    QIAN X T, TIAN A L, LIU B C, et al. Precision analysis of phase shifting digital holography micromeasurement system based on LCSLM[J]. Acta Photonica Sinica, 2022, 51(4): 0409003. (in Chinese). doi: 10.3788/gzxb20225104.0409003
    [16]
    邓丽军, 黄星艳, 曾吕明, 等. 基于双色LED芯片的双波长像面数字全息显微术[J]. 光学学报,2018,38(1):0111004. doi: 10.3788/AOS201838.0111004

    DENG L J, HUANG X Y, ZENG L M, et al. Dual-wavelength image-plane digital holographic microscopy based on Bi-color LED chips[J]. Acta Optica Sinica, 2018, 38(1): 0111004. (in Chinese). doi: 10.3788/AOS201838.0111004
    [17]
    LIM J, CHOI H, PARK N C. Phase-shift digital holography using multilayer ceramic capacitor actuators[J]. Optics and Lasers in Engineering, 2022, 156: 107080. doi: 10.1016/j.optlaseng.2022.107080
    [18]
    SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science & Applications, 2019, 8(1): 90.
    [19]
    WANG Y L, WANG Y ZH, GUO ZH Y. OAM radar based fast super-resolution imaging[J]. Measurement, 2022, 189: 110600. doi: 10.1016/j.measurement.2021.110600
    [20]
    SHAW L A, PANAS R M, SPADACCINI C M, et al. Scanning holographic optical tweezers[J]. Optics Letters, 2017, 42(15): 2862-2865. doi: 10.1364/OL.42.002862
    [21]
    XU L Y, REN Y, CHEN L L, et al. Azimuth measurement based on OAM phase spectrum of optical vortices[J]. Optics Communications, 2023, 530: 129170. doi: 10.1016/j.optcom.2022.129170
    [22]
    FUJIMOTO I, SATO S, KIM M Y, et al. Optical vortex beams for optical displacement measurements in a surveying field[J]. Measurement Science and Technology, 2011, 22(10): 105301. doi: 10.1088/0957-0233/22/10/105301
    [23]
    SUN H B, WANG X H, SUN P. In-plane displacement measurement using optical vortex phase shifting[J]. Applied Optics, 2016, 55(21): 5610-5613. doi: 10.1364/AO.55.005610
    [24]
    WANG W P, HUANG S J, CHEN Y, et al. Three-dimensional refractive index measurement of special optical fiber based on optical vortex phase-shifting digital holographic microscopy[J]. Optical Engineering, 2019, 58(3): 034108.
    [25]
    ZHAO D E, JIA CH ZH, MA Y Y, et al. High-accuracy surface profile measurement based on the vortex phase-shifting interferometry[J]. International Journal of Optics, 2021, 2021: 6937072.
    [26]
    KOTLYAR V V, KOVALEV A A, SKIDANOV R V, et al. Simple optical vortices formed by a spiral phase plate[J]. Journal of Optical Technology, 2007, 74(10): 686-693. doi: 10.1364/JOT.74.000686
    [27]
    DENG J, WANG H K, ZHANG F J, et al. Two-step phase demodulation algorithm based on the extreme value of interference[J]. Optics Letters, 2012, 37(22): 4669-4671. doi: 10.1364/OL.37.004669
  • Relative Articles

    [1]WANG Shen, LIU Quan, GUO Cheng-li, YAN Li-song. CGH null compensation testing of high-order coaxial aspherical surfaces[J]. Chinese Optics, 2025, 18(2): 237-244. doi: 10.37188/CO.2024-0152
    [2]WANG Zi-hao, LIU Zhi-kai, FENG Yu-xiang, ZHANG Cheng-long, LV Li-dong. Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system[J]. Chinese Optics, 2025, 18(2): 287-296. doi: 10.37188/CO.2024-0122
    [3]HUANG Hui-ming, LIU Gui-hua, DENG Lei, SONG Tao, QIN Fu-ping. Multi-line laser 3D reconstruction based on geometric estimation optimization[J]. Chinese Optics, 2025, 18(2): 274-286. doi: 10.37188/CO.2024-0184
    [4]基于FPGA的PDH激光稳频数字化实现[J]. Chinese Optics. doi: 10.37188/CO.2024-0080
    [5]Chao MEI, Ke Cheng, Xiao-wen YI, Cai-ying Fu, ZENG Ti-xian. 含非正则涡旋对的部分相干光束的空间相关奇点与轨道角动量谱[J]. Chinese Optics. doi: 10.37188/CO.EN.2025-0001
    [6]WANG Hua-xin, WANG Tong, XIONG Han. Measurement of orbital angular momentum of vortex beam by topological charge difference[J]. Chinese Optics, 2025, 18(2): 216-223. doi: 10.37188/CO.2024-0141
    [7]YU Hai-yang, SHANG Fan-hua, WANG Yu-xing, WANG Da-tao, CHEN Chun-yi. Recognition method for vortex beams orbital angular momentum with imbalanced label[J]. Chinese Optics, 2025, 18(2): 207-215. doi: 10.37188/CO.2024-0155
    [8]PEI Hui-yi, JIANG Lun, WANG Jin-jiang, CUI Yong, FANG Yuan-xiang, ZHANG Jia-ming, CHEN Ci. Phase distortion correction of fringe patterns in spaceborne Doppler asymmetric spatial heterodyne interferometry[J]. Chinese Optics, 2025, 18(2): 382-392. doi: 10.37188/CO.EN-2024-0007
    [9]基于液晶空间光调制器的全息再现像设计[J]. Chinese Optics. doi: 10.37188/CO.2024-0224
    [10]ZHOU Chen, MA Liu-hao, WANG Yu. Measurement of methane concentration with wide dynamic range using heterodyne phase-sensitive dispersion spectroscopy[J]. Chinese Optics, 2024, 17(4): 789-800. doi: 10.37188/CO.2023-0177
    [11]ZHANG Xu, LI Shi-jie, LIU Bing-cai, TIAN Ai-ling, LIANG Hai-feng, CAI Chang-long. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. doi: 10.37188/CO.2023-0042
    [12]SUN Yi-yang, XU Jin-kai, YU Zhan-jiang, ZHANG Xiang-hui, CHENG Ya-ya, YU Hua-dong. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics, 2022, 15(2): 355-363. doi: 10.37188/CO.2021-0089
    [13]GUAN Hai-jun, LIU Yun-qing, ZHANG Feng-jing. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. doi: 10.3788/CO.20191205.1131
    [14]SONG Fang-xi, MENG Wei-dong, XIA Yan, CHEN Yan, PU Xiao-yun. Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens[J]. Chinese Optics, 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630
    [15]YAN Gong-jing, ZHANG Xian-zhong. Research on non-null convex aspherical sub-aperture stitching detection technology[J]. Chinese Optics, 2018, 11(5): 798-803. doi: 10.3788/CO.20181105.0798
    [16]QI Zi-wen, LIU Bing-guo, ZHANG Zhong-hai, LU Bing-hui, LIU Guo-dong. Comparison of phase extraction algorithms in testing of phase defects with two-point interference[J]. Chinese Optics, 2016, 9(4): 483-490. doi: 10.3788/CO.20160904.0483
    [17]LI Xin-xi, WANG Yan, WANG Yun, HUANG Chao-qiang, ZHANG Ying. Design of compact neutron spin flipper based on cold neutron spectrum[J]. Chinese Optics, 2014, 7(4): 600-607. doi: 10.3788/CO.20140704.0600
    [18]SU Zhi-de, SHI Zhen-guang, PENG Ji, SUI Yong-xin, YANG Huai-jiang. Implementation of accurate phase shift in Fizeau interferometer[J]. Chinese Optics, 2013, 6(2): 244-250. doi: 10.3788/CO.20130602.0244
    [19]YANG T, HO H P. Simulation and analysis of phase-sensitive surface plasmon resonance sensor based on enhanced optical transmission through arrays of nanoholes in silver films[J]. Chinese Optics, 2010, 3(1): 57-63.
    [20]ZHANG Wei-lai, SONG Ke-fei, WANG Yun-lei, PAN Li-hua, MA Qing-jun, WANG Long-qi, LIU Hai-bo. Design of data acquistion of solid-phase time-resolved fluorescence immunoassay instrument[J]. Chinese Optics, 2009, 2(4): 316-321.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.1 %FULLTEXT: 21.1 %META: 59.5 %META: 59.5 %PDF: 19.4 %PDF: 19.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %其他: 0.9 %其他: 0.9 %China: 0.3 %China: 0.3 %Malvern: 0.1 %Malvern: 0.1 %Saitama: 0.3 %Saitama: 0.3 %Seattle: 2.3 %Seattle: 2.3 %Tiruchi: 0.3 %Tiruchi: 0.3 %Wellesley: 0.1 %Wellesley: 0.1 %上海: 5.2 %上海: 5.2 %东京: 0.3 %东京: 0.3 %东莞: 0.1 %东莞: 0.1 %中卫: 0.3 %中卫: 0.3 %中山: 0.3 %中山: 0.3 %佛山: 0.7 %佛山: 0.7 %保定: 0.6 %保定: 0.6 %克利夫顿: 0.4 %克利夫顿: 0.4 %兰州: 0.1 %兰州: 0.1 %北京: 3.5 %北京: 3.5 %南京: 0.9 %南京: 0.9 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %厦门: 0.3 %厦门: 0.3 %台北: 0.4 %台北: 0.4 %台州: 0.3 %台州: 0.3 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.9 %呼和浩特: 0.9 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.6 %唐山: 0.6 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 1.4 %圣何塞: 1.4 %天津: 0.7 %天津: 0.7 %太原: 0.4 %太原: 0.4 %安康: 7.9 %安康: 7.9 %宣城: 0.3 %宣城: 0.3 %张家口: 2.6 %张家口: 2.6 %徐州: 0.4 %徐州: 0.4 %成都: 0.6 %成都: 0.6 %扬州: 0.4 %扬州: 0.4 %昆明: 0.7 %昆明: 0.7 %普埃布拉: 0.1 %普埃布拉: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.9 %杭州: 0.9 %武汉: 0.7 %武汉: 0.7 %汉中: 0.1 %汉中: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %济南: 0.7 %济南: 0.7 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.1 %海得拉巴: 0.1 %深圳: 1.0 %深圳: 1.0 %湖州: 0.1 %湖州: 0.1 %漯河: 0.9 %漯河: 0.9 %潮州: 0.1 %潮州: 0.1 %爱达荷福尔斯: 0.1 %爱达荷福尔斯: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %绥化: 0.1 %绥化: 0.1 %绵阳: 0.3 %绵阳: 0.3 %聊城: 0.1 %聊城: 0.1 %芒廷维尤: 18.5 %芒廷维尤: 18.5 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %衡水: 0.1 %衡水: 0.1 %西宁: 7.1 %西宁: 7.1 %西安: 4.3 %西安: 4.3 %诺沃克: 7.9 %诺沃克: 7.9 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.3 %费利蒙: 0.3 %赣州: 0.4 %赣州: 0.4 %运城: 0.7 %运城: 0.7 %遵义: 0.1 %遵义: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %长春: 6.4 %长春: 6.4 %长沙: 0.7 %长沙: 0.7 %阿坝: 0.3 %阿坝: 0.3 %青岛: 0.9 %青岛: 0.9 %其他其他ChinaMalvernSaitamaSeattleTiruchiWellesley上海东京东莞中卫中山佛山保定克利夫顿兰州北京南京南宁南昌厦门台北台州周口呼和浩特哥伦布唐山嘉兴圣何塞天津太原安康宣城张家口徐州成都扬州昆明普埃布拉朝阳杭州武汉汉中江门沈阳沧州济南海口海得拉巴深圳湖州漯河潮州爱达荷福尔斯白城石家庄绥化绵阳聊城芒廷维尤芝加哥苏州衡水西宁西安诺沃克贵阳费利蒙赣州运城遵义郑州重庆长春长沙阿坝青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(409) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return