Citation: | YANG Jiang-tao, WANG Ming-kai, LIU Si-tuo, LIANG Lei, LIU Zhi, GUO Yue. Detection method of solar position using a biomimetic polarized light compass[J]. Chinese Optics, 2024, 17(3): 548-559. doi: 10.37188/CO.2023-0192 |
Aiming at the requirement of polarized light navigation for accurate position information of feature points in the sky, an accurate detection method for the solar position of imaging system based on all sky polarization mode is proposed. Compared with the traditional detection method of the solar position based on spot, we use the inherent polarization information in the atmosphere to complete the accurate measurement of the solar position, which has the characteristics of simple, high accuracy and wide application range. The optical acquisition system consists of three micro large-field-of-view camera modules and polarizers, which makes the structure more compact, smaller and lower in height. Starting from the principle, the algorithm of solving the solar position is simulated first, and then the algorithm is verified in three weather environments (sunny, occluded, and aerosol) using the optical acquisition system. It can be seen that when the weather is clear, the sun is detected at different times of the same day, and the accuracy of the measured sun's altitude and azimuth are 0.024° and 0.03° respectively; when the sun is blocked by high-rise buildings, the accuracy of the measured sun's altitude and azimuth are 0.08° and 0.05°; when the sun is blocked by the branches and leaves of trees, the accuracy of the measured sun's altitude and azimuth are 0.3° and 0.1° respectively. Only when the aerosol concentration exceeds a certain amount will the Rayleigh distribution mode of polarized light be destroyed, which will affect the detection accuracy of solar position. The experimental results show that this new detection method can not only meet the needs of polarized light navigation for the solar position, but also provide a new way of exploration for fans who like to explore the mysteries of the universe.
[1] |
WANG X H, WANG J P, ZHANG CH W. Research of an omniberaing sun locating method with fisheye picture based on transform domain algorithm[C]. Proceedings of the International Conference on Intelligent Computing in Signal Processing and Pattern Recognition, Springer, 2006: 1169-1174.
|
[2] |
刘鹏, 吴瑞梅, 杨普香, 等. 基于计算机视觉技术的茶叶品质随机森林感官评价方法研究[J]. 光谱学与光谱分析,2019,39(1):193-198.
LIU P, WU R M, YANG P X, et al. Study of sensory quality evaluation of tea using computer vision technology and forest random method[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 193-198. (in Chinese).
|
[3] |
ZHANG W J, CAO Y, ZHANG X ZH, et al. Angle of sky light polarization derived from digital images of the sky under various conditions[J]. Applied Optics, 2017, 56(3): 587-595. doi: 10.1364/AO.56.000587
|
[4] |
LU H, ZHAO K CH, WANG X CH, et al. Real-time imaging orientation determination system to verify imaging polarization navigation algorithm[J]. Sensors, 2016, 16(2): 144. doi: 10.3390/s16020144
|
[5] |
杨菁华. 基于无人机机载异类传感器的高超声速目标定位关键技术[D]. 南京: 南京航空航天大学, 2018.
YANG J H. Research on key technology of hypersonic target location based on airborne heterogeneous sensors of UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese).
|
[6] |
杨江涛, 王健安, 王银, 等. 基于大气偏振模式的三维姿态角解算方法[J]. 激光与光电子学进展,2020,57(22):221107.
YANG J T, WANG J A, WANG Y, et al. Calculation method of three-dimensional attitude angle based on atmospheric polarization pattern[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221107. (in Chinese).
|
[7] |
顾敬桥, 李高杰, 胡鹏伟, 等. 基于大气多次散射的波浪水下偏振模式研究[J]. 中国光学(中英文),2023,16(6):1324-1332. doi: 10.37188/CO.2022-0223
GU J Q, LI G J, HU P W, et al. The polarization mode of underwater waves based on atmospheric multiple scattering[J]. Chinese Optics, 2023, 16(6): 1324-1332. (in Chinese). doi: 10.37188/CO.2022-0223
|
[8] |
杨江涛, 王健安, 王银, 等. 基于柔性材料的亚波长金属光栅偏振器的关键技术研究[J]. 中国激光,2020,47(11):1113004. doi: 10.3788/CJL202047.1113004
YANG J T, WANG J A, WANG Y, et al. Sub-wavelength metal-grating polarizer fabricated on a flexible substrate[J]. Chinese Journal of Lasers, 2020, 47(11): 1113004. (in Chinese). doi: 10.3788/CJL202047.1113004
|
[9] |
YANG J T, WANG J A, WANG Y, et al. Algorithm design and experimental verification of a heading measurement system based on polarized light/inertial combination[J]. Optics Communications, 2021, 478: 126402. doi: 10.1016/j.optcom.2020.126402
|
[10] |
TANG J, ZHANG N, LI D L, et al. Novel robust skylight compass method based on full-sky polarization imaging under harsh conditions[J]. Optics Express, 2016, 24(14): 15834-15844. doi: 10.1364/OE.24.015834
|
[11] |
ZHAO H J, XING J, GU X F, et al. Polarization imaging in atmospheric environment based on polarized reflectance retrieval[J]. Chinese Optics Letters, 2019, 17(1): 012601. doi: 10.3788/COL201917.012601
|
[12] |
张卫国. 海面太阳耀光背景下的偏振探测技术[J]. 中国光学,2018,11(2):231-236. doi: 10.3788/co.20181102.0231
ZHANG W G. Application of polarization detection technology under the background of sun flare on sea surface[J]. Chinese Optics, 2018, 11(2): 231-236. (in Chinese). doi: 10.3788/co.20181102.0231
|
[13] |
LAMBRINOS D. Navigation in desert ants: the robotic solution[J]. Robotica, 2003, 21(4): 407-426. doi: 10.1017/S0263574703005058
|
[14] |
YANG J T, XU X Y, CHEN X, et al. Polarized light compass-aided inertial navigation under discontinuous observations environment[J]. Optics Express, 2022, 30(11): 19665-19683. doi: 10.1364/OE.459870
|
[15] |
王威, 褚金奎, 崔岩, 等. 基于矢量辐射传输的大气偏振建模[J]. 中国激光,2013,40(5):0513001. doi: 10.3788/CJL201340.0513001
WANG W, CHU J K, CUI Y, et al. Modeling of atmospheric polarization pattern based on vector radiative transfer[J]. Chinese Journal of Lasers, 2013, 40(5): 0513001. (in Chinese). doi: 10.3788/CJL201340.0513001
|
[16] |
褚金奎, 陈文静, 王洪青, 等. 基于偏振光传感器的移动机器人导航实验[J]. 光学 精密工程,2011,19(10):2419-2426. doi: 10.3788/OPE.20111910.2419
CHU J K, CHEN W J, WANG H Q, et al. Mobile robot navigation tests with polarization sensors[J]. Optics and Precision Engineering, 2011, 19(10): 2419-2426. (in Chinese). doi: 10.3788/OPE.20111910.2419
|
[17] |
褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报,2016,61(23):2568-2577. doi: 10.1360/N972015-01163
CHU J K, ZHANG R, WANG ZH W, et al. Progress on bio-inspired polarized skylight navigation sensor[J]. Chinese Science Bulletin, 2016, 61(23): 2568-2577. (in Chinese). doi: 10.1360/N972015-01163
|
[18] |
李逸博, 高隽, 王昕, 等. 独立通道偏振罗盘信息检测方法及传感器设计[J]. 光电工程,2015,42(7):12-18.
LI Y B, GAO J, WANG X, et al. Independent channel measurement method of polarization compass information and the design of sensor[J]. Opto-Electronic Engineering, 2015, 42(7): 12-18. (in Chinese).
|
[19] |
甘鑫, 高欣健, 钟彬彬, 等. 基于有限样本的大气偏振模式生成方法[J]. 光电工程,2021,48(5):200331.
GAN X, GAO X J, ZHONG B B, et al. A few-shot learning based generative method for atmospheric polarization modelling[J]. Opto-Electronic Engineering, 2021, 48(5): 200331. (in Chinese).
|
[20] |
范之国, 陈曼丽, 王波, 等. 基于大气偏振模式的三维姿态信息获取[J]. 光学 精密工程,2016,24(6):1248-1256. doi: 10.3788/OPE.20162406.1248
FAN ZH G, CHEN M L, WANG B, et al. Three-dimensional attitude information obtained by the skylight polarization pattern[J]. Optics and Precision Engineering, 2016, 24(6): 1248-1256. (in Chinese). doi: 10.3788/OPE.20162406.1248
|