CHEN Hui-bin, TANG Kai-fei, YOU Zhen-yu. Fully complex optical neural network with insertion-loss robustness[J]. Chinese Optics, 2024, 17(4): 834-841. doi: 10.37188/CO.2023-0198
Citation: CHEN Hui-bin, TANG Kai-fei, YOU Zhen-yu. Fully complex optical neural network with insertion-loss robustness[J]. Chinese Optics, 2024, 17(4): 834-841. doi: 10.37188/CO.2023-0198

Fully complex optical neural network with insertion-loss robustness

cstr: 32171.14.CO.2023-0198
Funds:  Supported by the National Natural Science Foundation of China (No. 61705119)
More Information
  • Corresponding author: chenhuibin@qztc.edu.cn
  • Received Date: 02 Nov 2023
  • Rev Recd Date: 24 Nov 2023
  • Available Online: 15 May 2024
  • Linear optical processors based on the cascaded topology of Mach-Zehnder Interferometer (MZI) have been demonstrated to be an important way of implementing Optical Neural Networks (ONN), but several practical challenges still need resolution. Concerning issues arising from chip manufacturing and testing processes that could lead to phase errors and insertion losses, we conducted experiments and theoretical simulations for various reconfigurable optical processors. We found that the weights of any arbitrary unitary matrix can be realized through some single N×N Clements units, that can substantially reduce the optical depth and enhance robustness against insertion losses. This approach allows for the construction of fully complex optical neural networks. Additionally, In multi-layer ONN, due to the limited degrees of freedom in constructing this arbitrary matrix, we introduced a phase-shift layer before each layer of the Clements unit. This design aids in mapping classification data to higher-dimensional spaces, facilitating faster neural network convergence.

     

  • [1]
    周治平, 许鹏飞, 董晓文. 硅基光电计算[J]. 中国激光,2020,47(6):0600001. doi: 10.3788/CJL202047.0600001

    ZHOU ZH P, XU P F, DONG X W. Computing on silicon photonic platform[J]. Chinese Journal of Lasers, 2020, 47(6): 0600001. (in Chinese) doi: 10.3788/CJL202047.0600001
    [2]
    王之江. 光计算技术进展[J]. 中国科学院院刊,1987,2(3):198-205.

    WANG ZH J. Progress in optical computing technology[J]. Bulletin of Chinese Academy of Sciences,1987,2(3):198-205. (in Chinese)
    [3]
    周宏强, 黄玲玲, 王涌天. 深度学习算法及其在光学的应用[J]. 红外与激光工程,2019,48(12):1226004. doi: 10.3788/IRLA201948.1226004

    ZHOU H Q, HUANG L L, WANG Y T. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12): 1226004. (in Chinese). doi: 10.3788/IRLA201948.1226004
    [4]
    FELDMANN J, YOUNGBLOOD N, WRIGHT C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569(7755): 208-214. doi: 10.1038/s41586-019-1157-8
    [5]
    RÍOS C, YOUNGBLOOD N, CHENG Z G, et al. In-memory computing on a photonic platform[J]. Science Advances, 2019, 5(2): eaau5759. doi: 10.1126/sciadv.aau5759
    [6]
    SHASTRI B J, TAIT A N, FERREIRA DE LIMA T, et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 2021, 15(2): 102-114. doi: 10.1038/s41566-020-00754-y
    [7]
    谢意维, 张涛, 戴道锌. 智能化可重构硅光集成器件及芯片应用研究[J]. 中兴通讯技术,2020,26(2):64-69. doi: 10.12142/ZTETJ.202002009

    XIE Y W, ZHANG T, DAI D X. Applications of intelligent reconfigurable silicon photonic devices and circuits[J]. ZTE Technology Journal, 2020, 26(2): 64-69. (in Chinese). doi: 10.12142/ZTETJ.202002009
    [8]
    王俊, 杨晓飞. 光子芯片研究进展及展望[J]. 世界科学,2020(12):29-31.

    WANG J, YANG X F. Research progress and prospects of photonic chips[J]. World Science, 2020(12): 29-31.
    [9]
    CLEMENTS W R, HUMPHREYS P C, METCALF B J, et al. Optimal design for universal multiport interferometers[J]. Optica, 2016, 3(12): 1460-1465. doi: 10.1364/OPTICA.3.001460
    [10]
    ZOU W W, MA B W, XU SH F, et al. Towards an intelligent photonic system[J]. China Information Sciences, 2020, 63(6): 160401. doi: 10.1007/s11432-020-2863-y
    [11]
    MARQUEZ B A, HUANG CH R, PRUCNAL P R, et al. Neuromorphic Silicon Photonics for Artificial Intelligence [M]//LOCKWOOD D J, PAVESI L. Silicon Photonics IV. Cham: Springer, 2021: 417-447.
    [12]
    郑一臻, 戴键, 张天, 等. 基于异构光子神经网络的多模态特征融合[J]. 中国光学(中英文),2023,16(6):1343-1355. doi: 10.37188/CO.2023-0036

    ZHENG Y ZH, DAI J, ZHANG T, et al. Multimodal feature fusion based on heterogeneous optical neural networks[J]. Chinese Optics, 2023, 16(6): 1343-1355. (in Chinese). doi: 10.37188/CO.2023-0036
    [13]
    GIAMOUGIANNIS G, TSAKYRIDIS A, MORALIS-PEGIOS M, et al. Universal linear optics revisited: new perspectives for neuromorphic computing with silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29(2): 6200116.
    [14]
    BANDYOPADHYAY S, HAMERLY R, ENGLUND D. Hardware error correction for programmable photonics[J]. Optica, 2021, 8(10): 1247-1255. doi: 10.1364/OPTICA.424052
    [15]
    WILLIAMSON I A D, HUGHES T W, MINKOV M, et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(1): 7700412.
    [16]
    SPALL J, GUO X X, BARRETT T D, et al. Fully reconfigurable coherent optical vector–matrix multiplication[J]. Optics Letters, 2020, 45(20): 5752-5755. doi: 10.1364/OL.401675
    [17]
    谢锋, 朱硕隆, 张振荣. 分光比可调的光功率分束器的设计[J]. 中国光学(中英文),2023,16(5):1121-1128. doi: 10.37188/CO.2023-0038

    XIE F, ZHU SH L, ZHANG ZH R. Design of an optical power splitter with adjustable split ratio[J]. Chinese Optics, 2023, 16(5): 1121-1128. (in Chinese). doi: 10.37188/CO.2023-0038
    [18]
    ZHANG H, GU M, JIANG X D, et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 2021, 12(1): 457. doi: 10.1038/s41467-020-20719-7
    [19]
    SHOKRANEH. F, NEZAMI M S, LIBOIRON-LADOUCEUR O. Theoretical and experimental analysis of a 44 recongurable MZI-based linear optical processor[J]. Journal of Lightwave Technology, 2021: 1.
    [20]
    SHOKRANEH F, GEOFFROY-GAGNON S, LIBOIRON-LADOUCEUR O. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks[J]. Optics Express, 2020, 28(16): 23495-23508. doi: 10.1364/OE.395441
    [21]
    TSAKYRIDIS A, GIAMOUGIANNIS G, TOTOVIC A, et al. Fidelity restorable universal linear optics[J]. Advanced Photonics Research, 2022, 3(10): 2200001. doi: 10.1002/adpr.202200001
    [22]
    SHI Y, REN J Y, CHEN G Y, et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks[J]. Nature Communications, 2022, 13(1): 6048. doi: 10.1038/s41467-022-33877-7
    [23]
    SHAO R, ZHANG G, GONG X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components[J]. Photonics Research, 2022, 10(8): 1868-1876. doi: 10.1364/PRJ.449570
    [24]
    HAMERLY R, BANDYOPADHYAY S, ENGLUND D. Asymptotically fault-tolerant programmable photonics[J]. Nature Communications, 2022, 13(1): 6831. doi: 10.1038/s41467-022-34308-3
    [25]
    RECK M, ZEILINGER A, BERNSTEIN H J, et al. Experimental realization of any discrete unitary operator[J]. Physical Review Letters, 1994, 73(1): 58-61. doi: 10.1103/PhysRevLett.73.58
  • Relative Articles

    [1]SHEN Xin-jian, LUO Zi-xun, WU Jian, LI Bin, LIU Yan-de, CHEN Nan. Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS[J]. Chinese Optics, 2025, 18(2): 307-316. doi: 10.37188/CO.2024-0107
    [2]ZHANG Yan-na, OU Jun, CHI Hao, YANG Shu-na. Scintillation index analysis of radial Gaussian vortex beam array propagation in the atmosphere[J]. Chinese Optics, 2025, 18(1): 142-149. doi: 10.37188/CO.2024-0098
    [3]ZHAO Han-qi, LI Na, WU Bin, WU Gui-long, CHEN Yi-tong, FENG Xiao-fang, HE Pei-li, LI Wei. Nonlinear equalizer based on neural network in high-speed optical fiber communication systems[J]. Chinese Optics, 2025, 18(1): 114-120. doi: 10.37188/CO.2024-0114
    [4]垂直端面光波导形状缺陷的激光补偿[J]. Chinese Optics. doi: 10.37188/CO.2024-0220
    [5]空间引力波探测航天器光学测距噪声链路指标优化[J]. Chinese Optics. doi: 10.37188/CO.2024-0185
    [6]ZHU Xin-jun, ZHAO Hao-miao, WANG Hong-yi, SONG Li-mei, SUN Rui-qun. A hybrid network based on light self-limited attention for structured light phase and depth estimation[J]. Chinese Optics, 2024, 17(1): 118-127. doi: 10.37188/CO.2023-0066
    [7]LI Bin, LIU Yin-ling, YANG A-kun, CHEN Mo. Broad-band co-phase detection based on denoising convolutional neural network[J]. Chinese Optics, 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079
    [8]ZHANG Kang-yang, NI Zi-hao, DONG Bo, BAI Yu-lei. Phase gradient estimation using Bayesian neural network[J]. Chinese Optics, 2024, 17(4): 842-851. doi: 10.37188/CO.2023-0168
    [9]SONG Ming-zhu, GUO Rong, LI Li-zhou, TAO Shu-ping, CHEN Yan-tong, WANG Jun-sheng. Sea surface glint suppression method based on polarization feature reconstruction[J]. Chinese Optics, 2024, 17(6): 1297-1306. doi: 10.37188/CO.2024-0008
    [10]HAN Yao-hui, WANG Kun, ZHU You-qiang, LIU Xin-yue. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458-1466. doi: 10.37188/CO.2024-0030
    [11]ZHANG Jiong-yang, ZHAI Hao, WANG Ji, XIAO Yu-hua, DAI Hu, LIAN Ji-qing, YANG Shi-yu, CHEN Jiang, LIU Zhi-dong. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics. doi: 10.37188/CO.2024-0120
    [12]ZHANG Jing-yuan, CHEN Bei-bei, YANG Yong-xing, ZHU Qing-sheng, LI Jin-peng, ZHAO Jin-biao. Positioning algorithm for laser spot center based on BP neural network and genetic algorithm[J]. Chinese Optics, 2023, 16(2): 407-414. doi: 10.37188/CO.2022-0084
    [13]ZHENG Yi-zhen, DAI Jian, ZHANG Tian, XU Kun. Multimodal feature fusion based on heterogeneous optical neural networks[J]. Chinese Optics, 2023, 16(6): 1343-1355. doi: 10.37188/CO.2023-0036
    [14]FENG Jie, WANG Shi-gang, WEI Jian, ZHAO Yan. Saliency detection combined with selective light field refocusing of camera array[J]. Chinese Optics, 2021, 14(3): 587-595. doi: 10.37188/CO.2020-0165
    [15]CHEN Xiao-Dong, AI Da-Hang, ZHANG Jia-Chen, CAI Huai-Yu, CUI Ke-Rang. Gabor filter fusion network for pavement crack detection[J]. Chinese Optics, 2020, 13(6): 1293-1301. doi: 10.37188/CO.2020-0041
    [16]SHI Jian-hua, HAN Bing-chen. Internal profile reconstruction of microstructures based on near-infrared light transmission reflection interferometry with optical path compensation[J]. Chinese Optics, 2019, 12(2): 395-404. doi: 10.3788/CO.20191202.0395
    [17]WANG Chun-zhe, AN Jun-she, JIANG Xiu-jie, XING Xiao-xue. Region proposal optimization algorithm based on convolutional neural networks[J]. Chinese Optics, 2019, 12(6): 1348-1361. doi: 10.3788/CO.20191206.1348
    [18]QIAN Wei-zhu, YANG Li-bao. A fiber optic gyro error compensation method based on wavelet neural network[J]. Chinese Optics, 2018, 11(6): 1024-1031. doi: 10.3788/CO.20181106.1024
    [19]WANG Yong, ZHU Ming. Research on FAF joint tranform correlator based on morphological processing of input image[J]. Chinese Optics, 2009, 2(5): 460-465.
    [20]XU Zhi-jun, HONG Xi, YU Xin. Improvement of precision of encoder[J]. Chinese Optics, 2008, 1(1): 62-65.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.7 %FULLTEXT: 20.7 %META: 61.1 %META: 61.1 %PDF: 18.2 %PDF: 18.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %其他: 1.8 %其他: 1.8 %Central District: 0.2 %Central District: 0.2 %China: 0.4 %China: 0.4 %Seattle: 2.9 %Seattle: 2.9 %Tiruchi: 0.4 %Tiruchi: 0.4 %上海: 1.3 %上海: 1.3 %中卫: 0.4 %中卫: 0.4 %云浮: 0.4 %云浮: 0.4 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.2 %佛山: 0.2 %保定: 0.6 %保定: 0.6 %信阳: 0.4 %信阳: 0.4 %兰州: 1.7 %兰州: 1.7 %北京: 5.1 %北京: 5.1 %华盛顿州: 0.4 %华盛顿州: 0.4 %南京: 0.4 %南京: 0.4 %卡拉奇: 0.6 %卡拉奇: 0.6 %厦门: 0.2 %厦门: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.4 %台州: 0.4 %哥伦布: 0.4 %哥伦布: 0.4 %大连: 0.2 %大连: 0.2 %太原: 0.2 %太原: 0.2 %孝感: 1.7 %孝感: 1.7 %宁波: 0.6 %宁波: 0.6 %宜昌: 0.2 %宜昌: 0.2 %宜春: 0.6 %宜春: 0.6 %巴格达: 0.4 %巴格达: 0.4 %常州: 0.2 %常州: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 2.0 %张家口: 2.0 %成都: 0.2 %成都: 0.2 %新乡: 0.2 %新乡: 0.2 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.8 %杭州: 1.8 %武汉: 0.2 %武汉: 0.2 %江门: 0.2 %江门: 0.2 %沈阳: 0.6 %沈阳: 0.6 %泉州: 1.5 %泉州: 1.5 %济南: 0.2 %济南: 0.2 %深圳: 1.3 %深圳: 1.3 %温州: 0.4 %温州: 0.4 %漯河: 2.0 %漯河: 2.0 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.9 %福州: 0.9 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 32.1 %芒廷维尤: 32.1 %芝加哥: 1.8 %芝加哥: 1.8 %莫斯科: 0.4 %莫斯科: 0.4 %葵涌: 1.5 %葵涌: 1.5 %衡水: 0.2 %衡水: 0.2 %西宁: 2.0 %西宁: 2.0 %西安: 0.2 %西安: 0.2 %诺沃克: 10.1 %诺沃克: 10.1 %费利蒙: 0.2 %费利蒙: 0.2 %运城: 0.9 %运城: 0.9 %通化: 0.2 %通化: 0.2 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长春: 6.2 %长春: 6.2 %长沙: 0.7 %长沙: 0.7 %香港: 0.9 %香港: 0.9 %其他其他Central DistrictChinaSeattleTiruchi上海中卫云浮伊利诺伊州佛山保定信阳兰州北京华盛顿州南京卡拉奇厦门台北台州哥伦布大连太原孝感宁波宜昌宜春巴格达常州广州张家口成都新乡朝阳杭州武汉江门沈阳泉州济南深圳温州漯河石家庄福州绵阳芒廷维尤芝加哥莫斯科葵涌衡水西宁西安诺沃克费利蒙运城通化遵义郑州重庆长春长沙香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(332) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return