Volume 17 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
CHEN Hui-bin, TANG Kai-fei, YOU Zhen-yu. Fully complex optical neural network with insertion-loss robustness[J]. Chinese Optics, 2024, 17(4): 834-841. doi: 10.37188/CO.2023-0198
Citation: CHEN Hui-bin, TANG Kai-fei, YOU Zhen-yu. Fully complex optical neural network with insertion-loss robustness[J]. Chinese Optics, 2024, 17(4): 834-841. doi: 10.37188/CO.2023-0198

Fully complex optical neural network with insertion-loss robustness

cstr: 32171.14.CO.2023-0198
Funds:  Supported by the National Natural Science Foundation of China (No. 61705119)
More Information
  • Corresponding author: chenhuibin@qztc.edu.cn
  • Received Date: 02 Nov 2023
  • Rev Recd Date: 24 Nov 2023
  • Available Online: 15 May 2024
  • Linear optical processors based on the cascaded topology of Mach-Zehnder Interferometer (MZI) have been demonstrated to be an important way of implementing Optical Neural Networks (ONN), but several practical challenges still need resolution. Concerning issues arising from chip manufacturing and testing processes that could lead to phase errors and insertion losses, we conducted experiments and theoretical simulations for various reconfigurable optical processors. We found that the weights of any arbitrary unitary matrix can be realized through some single N×N Clements units, that can substantially reduce the optical depth and enhance robustness against insertion losses. This approach allows for the construction of fully complex optical neural networks. Additionally, In multi-layer ONN, due to the limited degrees of freedom in constructing this arbitrary matrix, we introduced a phase-shift layer before each layer of the Clements unit. This design aids in mapping classification data to higher-dimensional spaces, facilitating faster neural network convergence.

     

  • loading
  • [1]
    周治平, 许鹏飞, 董晓文. 硅基光电计算[J]. 中国激光,2020,47(6):0600001. doi: 10.3788/CJL202047.0600001

    ZHOU ZH P, XU P F, DONG X W. Computing on silicon photonic platform[J]. Chinese Journal of Lasers, 2020, 47(6): 0600001. (in Chinese) doi: 10.3788/CJL202047.0600001
    [2]
    王之江. 光计算技术进展[J]. 中国科学院院刊,1987,2(3):198-205.

    WANG ZH J. Progress in optical computing technology[J]. Bulletin of Chinese Academy of Sciences,1987,2(3):198-205. (in Chinese)
    [3]
    周宏强, 黄玲玲, 王涌天. 深度学习算法及其在光学的应用[J]. 红外与激光工程,2019,48(12):1226004. doi: 10.3788/IRLA201948.1226004

    ZHOU H Q, HUANG L L, WANG Y T. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12): 1226004. (in Chinese). doi: 10.3788/IRLA201948.1226004
    [4]
    FELDMANN J, YOUNGBLOOD N, WRIGHT C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569(7755): 208-214. doi: 10.1038/s41586-019-1157-8
    [5]
    RÍOS C, YOUNGBLOOD N, CHENG Z G, et al. In-memory computing on a photonic platform[J]. Science Advances, 2019, 5(2): eaau5759. doi: 10.1126/sciadv.aau5759
    [6]
    SHASTRI B J, TAIT A N, FERREIRA DE LIMA T, et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 2021, 15(2): 102-114. doi: 10.1038/s41566-020-00754-y
    [7]
    谢意维, 张涛, 戴道锌. 智能化可重构硅光集成器件及芯片应用研究[J]. 中兴通讯技术,2020,26(2):64-69. doi: 10.12142/ZTETJ.202002009

    XIE Y W, ZHANG T, DAI D X. Applications of intelligent reconfigurable silicon photonic devices and circuits[J]. ZTE Technology Journal, 2020, 26(2): 64-69. (in Chinese). doi: 10.12142/ZTETJ.202002009
    [8]
    王俊, 杨晓飞. 光子芯片研究进展及展望[J]. 世界科学,2020(12):29-31.

    WANG J, YANG X F. Research progress and prospects of photonic chips[J]. World Science, 2020(12): 29-31.
    [9]
    CLEMENTS W R, HUMPHREYS P C, METCALF B J, et al. Optimal design for universal multiport interferometers[J]. Optica, 2016, 3(12): 1460-1465. doi: 10.1364/OPTICA.3.001460
    [10]
    ZOU W W, MA B W, XU SH F, et al. Towards an intelligent photonic system[J]. China Information Sciences, 2020, 63(6): 160401. doi: 10.1007/s11432-020-2863-y
    [11]
    MARQUEZ B A, HUANG CH R, PRUCNAL P R, et al. Neuromorphic Silicon Photonics for Artificial Intelligence [M]//LOCKWOOD D J, PAVESI L. Silicon Photonics IV. Cham: Springer, 2021: 417-447.
    [12]
    郑一臻, 戴键, 张天, 等. 基于异构光子神经网络的多模态特征融合[J]. 中国光学(中英文),2023,16(6):1343-1355. doi: 10.37188/CO.2023-0036

    ZHENG Y ZH, DAI J, ZHANG T, et al. Multimodal feature fusion based on heterogeneous optical neural networks[J]. Chinese Optics, 2023, 16(6): 1343-1355. (in Chinese). doi: 10.37188/CO.2023-0036
    [13]
    GIAMOUGIANNIS G, TSAKYRIDIS A, MORALIS-PEGIOS M, et al. Universal linear optics revisited: new perspectives for neuromorphic computing with silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29(2): 6200116.
    [14]
    BANDYOPADHYAY S, HAMERLY R, ENGLUND D. Hardware error correction for programmable photonics[J]. Optica, 2021, 8(10): 1247-1255. doi: 10.1364/OPTICA.424052
    [15]
    WILLIAMSON I A D, HUGHES T W, MINKOV M, et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(1): 7700412.
    [16]
    SPALL J, GUO X X, BARRETT T D, et al. Fully reconfigurable coherent optical vector–matrix multiplication[J]. Optics Letters, 2020, 45(20): 5752-5755. doi: 10.1364/OL.401675
    [17]
    谢锋, 朱硕隆, 张振荣. 分光比可调的光功率分束器的设计[J]. 中国光学(中英文),2023,16(5):1121-1128. doi: 10.37188/CO.2023-0038

    XIE F, ZHU SH L, ZHANG ZH R. Design of an optical power splitter with adjustable split ratio[J]. Chinese Optics, 2023, 16(5): 1121-1128. (in Chinese). doi: 10.37188/CO.2023-0038
    [18]
    ZHANG H, GU M, JIANG X D, et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 2021, 12(1): 457. doi: 10.1038/s41467-020-20719-7
    [19]
    SHOKRANEH. F, NEZAMI M S, LIBOIRON-LADOUCEUR O. Theoretical and experimental analysis of a 44 recongurable MZI-based linear optical processor[J]. Journal of Lightwave Technology, 2021: 1.
    [20]
    SHOKRANEH F, GEOFFROY-GAGNON S, LIBOIRON-LADOUCEUR O. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks[J]. Optics Express, 2020, 28(16): 23495-23508. doi: 10.1364/OE.395441
    [21]
    TSAKYRIDIS A, GIAMOUGIANNIS G, TOTOVIC A, et al. Fidelity restorable universal linear optics[J]. Advanced Photonics Research, 2022, 3(10): 2200001. doi: 10.1002/adpr.202200001
    [22]
    SHI Y, REN J Y, CHEN G Y, et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks[J]. Nature Communications, 2022, 13(1): 6048. doi: 10.1038/s41467-022-33877-7
    [23]
    SHAO R, ZHANG G, GONG X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components[J]. Photonics Research, 2022, 10(8): 1868-1876. doi: 10.1364/PRJ.449570
    [24]
    HAMERLY R, BANDYOPADHYAY S, ENGLUND D. Asymptotically fault-tolerant programmable photonics[J]. Nature Communications, 2022, 13(1): 6831. doi: 10.1038/s41467-022-34308-3
    [25]
    RECK M, ZEILINGER A, BERNSTEIN H J, et al. Experimental realization of any discrete unitary operator[J]. Physical Review Letters, 1994, 73(1): 58-61. doi: 10.1103/PhysRevLett.73.58
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(280) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return