Citation: | RUAN Peng, WANG Yu-hai, PAN Qi-kun, SHAO Chun-lei, CHEN Fei, GUO Jin. Study on beam quality of DF laser with inner cavity unstable resonator[J]. Chinese Optics, 2024, 17(5): 1068-1074. doi: 10.37188/CO.2023-0210 |
Laser beam quality is one of the key indicators to measure the application performance of laser. To meet the application requirements of long-distance optoelectronic countermeasures, we cany out the research on the design of unstable resonators and beam quality improvement techniques for non-chain pulsed deuterium fluoride (DF) lasers. Three sets of positive branch virtual confocal unstable resonators with different magnifications are designed. An inner cavity unstable resonator with two support structures of convex mirror, transverse support and longitudinal support, are constructed. The transverse support structure is equipped with a circulating water-cooling channel. Using 86.5% surrounding energy to define laser beam diameter, the laser beam quality is evaluated with beam quality factor
[1] |
KLINGBEIL A E, JEFFRIES J B, HANSON R K. Tunable mid-IR laser absorption sensor for time-resolved hydrocarbon fuel measurements[J]. Proceedings of the Combustion Institute, 2007, 31(1): 807-815. doi: 10.1016/j.proci.2006.07.228
|
[2] |
KLOSNER M, WU C, HELLER D F. Mid-IR Laser system for advanced neurosurgery[J]. Proceedings of SPIE, 2014, 8928: 89280D.
|
[3] |
STARECKI F, CHARPENTIER F, DOUALAN J L, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers[J]. Sensors and Actuators B: Chemical, 2015, 207: 518-525. doi: 10.1016/j.snb.2014.10.011
|
[4] |
PHAL Y, YEH K, BHARGAVA R. Mid-IR laser-based polarimetric imaging for polymeric and biological applications[J]. Proceedings of SPIE, 2021, 11656: 1165619.
|
[5] |
FROLOV Y N, VELIKANOV S D, LAZARENKO V I, et al. Remote laser analyzer for methane sensing in the air of subterranean spaces[J]. Proceedings of SPIE, 2002, 4722: 140-144. doi: 10.1117/12.472258
|
[6] |
TÖPFER T, PETROV K P, MINE Y, et al. Room-temperature mid-infrared laser sensor for trace gas detection[J]. Applied Optics, 1997, 36(30): 8042-8049. doi: 10.1364/AO.36.008042
|
[7] |
VASIL’EV B I, MANNOUN O. IR differential-absorption lidars for ecological monitoring of the environment[J]. Quantum Electronics, 2006, 36(9): 801-820. doi: 10.1070/QE2006v036n09ABEH006577
|
[8] |
VELIKANOV S D, ELUTIN A S, KUDRYASHOV E A, et al. Use of a DF laser in the analysis of atmospheric hydrocarbons[J]. Quantum Electronics, 1997, 27(3): 273-276. doi: 10.1070/QE1997v027n03ABEH000923
|
[9] |
BRUNET H, MABRU M, VANNIER C. Improved DF performance of a repetitively pulsed HF/DF laser using a deuterated compound[J]. Proceedings of SPIE, 1997, 3092: 494-497. doi: 10.1117/12.270115
|
[10] |
SERAFETINIDES A A, RICKWOOD K R, PAPADOPOULOS A D. Performance studies of a novel design atmospheric pressure pulsed HF/DF laser[J]. Applied Physics B, 1991, 52(1): 46-54. doi: 10.1007/BF00405686
|
[11] |
IGNAT'EV A B, KAZANTSEV S Y, KONONOV I G, et al. On the possibility of controlling the wave front of a wide-aperture HF(DF) laser by the method of Talbot interferometry[J]. Quantum Electronics, 2008, 38(1): 69-72. doi: 10.1070/QE2008v038n01ABEH013546
|
[12] |
PAN Q K, XIE J J, WANG CH R, et al. Non-chain pulsed DF laser with an average power of the order of 100 W[J]. Applied Physics B, 2016, 122(7): 200. doi: 10.1007/s00340-016-6475-z
|
[13] |
顾文珊, 梁小溪, 李红超, 等. 小型化轴流式非链式脉冲氟化氘激光器[J]. 红外与激光工程,2021,50(1):20200082. doi: 10.3788/IRLA20200082
GU W SH, LIANG X X, LI H CH, et al. Miniaturized axial flow non-chain pulsed deuterium fluoride laser[J]. Infrared and Laser Engineering, 2021, 50(1): 20200082. (in Chinese). doi: 10.3788/IRLA20200082
|
[14] |
TARASENKO V F, PANCHENKO A N. Efficient discharge-pumped non-chain HF and DF lasers[J]. Proceedings of SPIE, 2006, 6101: 61011P. doi: 10.1117/12.643226
|
[15] |
APOLLONOV V V, KAZANTSEV S Y, SAIFULIN A V, et al. Discharge characteristics in a Nonchain HF(DF) laser[J]. Quantum Electronics, 2000, 30(6): 483-485. doi: 10.1070/QE2000v030n06ABEH001747
|
[16] |
VELIKANOV S D, EVDOKIMOV P A, ZAPOL'SKY A F, et al. Pulse periodic HF (DF)-laser of atmospheric pressure with pulse repetition rate up to 2200 Hz[J]. Proceedings of SPIE, 2008, 7131: 71310V. doi: 10.1117/12.817070
|
[17] |
易爱平, 刘晶儒, 唐影, 等. 放电激励重复频率非链式HF激光器[J]. 强激光与粒子束,2011,23(7):1763-1766. doi: 10.3788/HPLPB20112307.1763
YI A P, LIU J R, TANG Y, et al. Discharge pumped repetition- rate non- chain HF laser[J]. High Power Laser and Particle Beams, 2011, 23(7): 1763-1766. (in Chinese). doi: 10.3788/HPLPB20112307.1763
|
[18] |
朱峰, 黄珂, 周松青, 等. 基于非稳腔的非链式脉冲HF激光光束质量优化[J]. 中国激光,2017,44(4):0401002. doi: 10.3788/CJL201744.0401002
ZHU F, HUANG K, ZHOU S Q, et al. Laser beam quality optimization of no-chain pulsed HF laser using unstable resonator[J]. Chinese Journal of Lasers, 2017, 44(4): 0401002. (in Chinese). doi: 10.3788/CJL201744.0401002
|
[19] |
阮鹏, 谢冀江, 张来明, 等. 非链式脉冲氟化氘激光器的动力学模拟和实验研究[J]. 中国激光,2013,40(7):0702002. doi: 10.3788/CJL201340.0702002
RUAN P, XIE J J, ZHANG L M, et al. Dynamical simulation and experimental study of non-chain pulsed DF laser[J]. Chinese Journal of Lasers, 2013, 40(7): 0702002. (in Chinese). doi: 10.3788/CJL201340.0702002
|
[20] |
黄超, 黄珂, 易爱平, 等. 200 W重复频率中红外氟化氢化学激光器[J]. 中国激光,2019,46(8):0801005. doi: 10.3788/CJL201946.0801005
HUANG CH, HUANG K, YI A P, et al. 200 W Mid-infrared HF chemical laser with repetition rate[J]. Chinese Journal of Lasers, 2019, 46(8): 0801005. (in Chinese). doi: 10.3788/CJL201946.0801005
|
[21] |
APOLLONOV V V, BELEVTSEV A A, FIRSOV K N, et al. Advanced studies on powerful wide-aperture nonchain HF(DF) lasers with a self-sustained volume discharge to initiate chemical reaction[J]. Proceedings of SPIE, 2003, 5120: 529-541.
|
[22] |
谭改娟, 谢冀江, 潘其坤, 等. 非链式脉冲DF激光器非稳腔设计与实验研究[J]. 中国激光,2014,41(1):0102004. doi: 10.3788/CJL201441.0102004
TANG G J, XIE J J, PAN Q K, et al. Design and experimental investigation on unstable resonator for non-chain pulsed DF laser[J]. Chinese Journal of Lasers, 2014, 41(1): 0102004. (in Chinese). doi: 10.3788/CJL201441.0102004
|