Volume 17 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
MAO Hao-di, LI Yuan-yang, GUO Jin. Wavefront reconstruction for extended beacons under strong atmospheric turbulence[J]. Chinese Optics, 2024, 17(5): 1209-1218. doi: 10.37188/CO.2023-0213
Citation: MAO Hao-di, LI Yuan-yang, GUO Jin. Wavefront reconstruction for extended beacons under strong atmospheric turbulence[J]. Chinese Optics, 2024, 17(5): 1209-1218. doi: 10.37188/CO.2023-0213

Wavefront reconstruction for extended beacons under strong atmospheric turbulence

Funds:  Supported by the Independent Basic Research Project of State Key Laboratory (No. SKLLIM2104)
More Information
  • Corresponding author: guojin@ciomp.ac.cn
  • Received Date: 28 Nov 2023
  • Rev Recd Date: 09 Jan 2024
  • Accepted Date: 18 Mar 2024
  • Available Online: 11 Apr 2024
  • Aiming at the wavefront detection without an ideal point beacon in the adaptive optical system under the strong turbulent environment, we proposed a method to detect the optical field information of extended beacons using a Plenoptic sensor. The optical field imaging principle, wavefront phase reconstruction algorithm, and error influence rule of extended beacons were studied. The imaging process of the extended beacon on the optical field sensor was simplified through the equivalence method, and the optical field images were rearranged in a specific way. The image cross-correlation and Zernike mode methods were used to realize the wavefront reconstruction of the 0° field of view. Simulation studies were conducted on error-influencing factors such as different input aberration coefficients, the number of single-row microlens elements, and noise. The results show that when the input aberration is less than 6.5 λ, the wavefront reconstruction accuracy is about 0.08 λ. For the image detector with an image resolution of 1080×1080 and pixel size of 5.5 μm, the wavefront reconstruction accuracy is the highest when the number of single row microlens units is between 40 and 50, and the system noise hardly affects the accuracy. Finally, an extended beacon wavefront detection system was built to reconstruct the four aberrant wavefronts of 0° field of view by detecting the extended beacon. The wavefront reconstruction accuracy of the experimental system is about 0.04 λ, which meets the wavefront detection requirements of the adaptive optical system.

     

  • loading
  • [1]
    BABCOCK H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.
    [2]
    SPRANGLE P, TING A, PENANO J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(2): 138-148. doi: 10.1109/JQE.2008.2002501
    [3]
    CAMPBELL H I, GREENAWAY A H. Wavefront sensing: from historical roots to the state-of-the-art[J]. EAS Publications Series, 2006, 22: 165-185. doi: 10.1051/eas:2006131
    [4]
    朱沁雨, 陈梅蕊, 陆焕钧, 等. 微透镜阵列衍射效应对夏克一哈特曼波前探测器的影响分析[J]. 中国光学(中英文),2023,16(1):94-102. doi: 10.37188/CO.2022-0176

    ZHU Q Y, CHEN M R, LU H J, et al. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. (in Chinese). doi: 10.37188/CO.2022-0176
    [5]
    王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学(中英文),2023,16(4):843-852. doi: 10.37188/CO.2022-0230

    WANG H M, QUAN J N, GE B ZH. An adaptive optics system suitable for near-ground imaging[J]. Chinese Optics, 2023, 16(4): 843-852. (in Chinese). doi: 10.37188/CO.2022-0230
    [6]
    KO J, DAVIS C C. Comparison of the plenoptic sensor and the Shack-Hartmann sensor[J]. Applied Optics, 2017, 56(13): 3689-3698. doi: 10.1364/AO.56.003689
    [7]
    ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 99-106. doi: 10.1109/34.121783
    [8]
    RODRÍGUEZ-RAMOS M J, CASTELLA F B, NAVA P F, et al. Wavefront and distance measurement using the CAFADIS camera[J]. Proceedings of SPIE, 2008, 7015: 70155Q. doi: 10.1117/12.789380
    [9]
    LV Y, ZHANG X ZH, MA H T, et al. Large viewing field wavefront sensing by using a lightfield system[J]. Proceedings of SPIE, 2013, 8905: 89052T. doi: 10.1117/12.2035212
    [10]
    JIANG P ZH, XU J P, LIANG Y H, et al. Plenoptic camera wavefront sensing with extended sources[J]. Journal of Modern Optics, 2016, 63(16): 1573-1578. doi: 10.1080/09500340.2016.1162336
    [11]
    ESLAMI M, WU CH SH, RZASA J, et al. Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence[J]. Proceedings of SPIE, 2012, 8517: 85170S. doi: 10.1117/12.943038
    [12]
    WU CH SH, DAVIS C C. Modified plenoptic camera for phase and amplitude wavefront sensing[J]. Proceedings of SPIE, 2013, 8874: 88740I.
    [13]
    WU CH SH, KO J, NELSON W, et al. Phase and amplitude wave front sensing and reconstruction with a modified plenoptic camera[J]. Proceedings of SPIE, 2014, 9224: 92240G.
    [14]
    WU CH SH, KO J, DAVIS C C. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor[J]. Journal of the Optical Society of America A, 2015, 32(5): 964-978. doi: 10.1364/JOSAA.32.000964
    [15]
    WU CH SH, KO J, DAVIS C C. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam[J]. Optics Express, 2016, 24(26): 29852-29871. doi: 10.1364/OE.24.029852
    [16]
    WU CH SH, KO J, DAVIS C C. Complex wavefront sensing with a plenoptic sensor[J]. Proceedings of SPIE, 2016, 9979: 99790Y.
    [17]
    WU CH SH, KO J, DAVIS C C. Imaging through strong turbulence with a light field approach[J]. Optics Express, 2016, 24(11): 11975-11986. doi: 10.1364/OE.24.011975
    [18]
    WU CH SH, KO J, DAVIS C C. Using a plenoptic sensor to reconstruct vortex phase structures[J]. Optics Letters, 2016, 41(14): 3169-3172. doi: 10.1364/OL.41.003169
    [19]
    WU CH SH, PAULSON D A, RZASA J R, et al. Comparison between the plenoptic sensor and the light field camera in restoring images through turbulence[J]. OSA Continuum, 2019, 2(9): 2511-2525. doi: 10.1364/OSAC.2.002511
    [20]
    KO J, WU CH SH, DAVIS C C. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor[J]. Proceedings of SPIE, 2016, 9979: 99790O.
    [21]
    HU J T, CHEN T, LIN X D, et al. Improved wavefront reconstruction and correction strategy for adaptive optics system with a plenoptic sensor[J]. IEEE Photonics Journal, 2021, 13(4): 1-8.
    [22]
    王志冲. 强湍流下激光通信波前光场传感技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2022.

    WANG ZH CH. Research on plenoptic wavefront sensing technique of free space laser communication under strong turbulence[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese).
    [23]
    LARDIÈRE O, CONAN R, CLARE R, et al. Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes[J]. Applied Optics, 2010, 49(31): G78-G94. doi: 10.1364/AO.49.000G78
    [24]
    NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(5)

    Article views(140) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return