Citation: | LUO Xuan, MENG He-chen, WANG Xiao-dan, CHEN Zi-hang, ZENG Xiong-hui, GAO Xiao-dong, ZHENG Shu-nan, MAO Hong-min. Structure and cathodoluminescence properties of Dy3+ and Tb3+ doped AlN films[J]. Chinese Optics, 2024, 17(4): 733-741. doi: 10.37188/CO.2023-0219 |
For the first time, Tb3+ and Dy3+ co-doped AlN films were prepared using ion implantation, and their crystal structure, cathodoluminescence properties and energy transfer mechanism were investigated. Raman scattering and X-ray diffraction results indicate that ion implantation of Dy3+ has caused increased compressive stress within the internal lattice when the dosage of Tb3+ remains constant. Continuous implantation led to the recombination of some point defects, resulting in a partial release of internal compressive stress. Cathodoluminescence spectra demonstrated that with high-dose Tb3+ implantation, the emission intensities of Tb3+ and Dy3+ exhibited different trends with increasing Dy3+ dosage. We propose the existence of a resonance energy transfer from Tb3+ ions 5D4→7F6 to Dy3+ ions 6H15/2→4F9/2 in AlN films. Finally, we observe that under different implantation dose of Dy3+ ions to Tb3+ ions, the emission color of the sample shifts between yellow-green and orange-yellow, with color temperatures ranging from 4042 to 5119K. Adjusting the dose ratio of Dy3+ to Tb3+ enables effective control of chromaticity coordinates and color temperatures.
[1] |
唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302. doi: 10.1016/j.apsusc.2020.146825
TANG L B, FU D Y, CHEN Q, et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. doi: 10.1016/j.apsusc.2020.146825
|
[2] |
CARDOSO J P S, CORREIA M R, VERMEERSCH R, et al. Europium-implanted AlN nanowires for red light-emitting diodes[J]. ACS Applied Nano Materials, 2022, 5(1): 972-984. doi: 10.1021/acsanm.1c03654
|
[3] |
丁寒. 基于NaYF4: Yb, Er上转换发光纳米材料的掌印和足迹增强显现[J]. 分析化学,2023,51(11):1774-1782. doi: 10.1063/1.4978855
DING H. Enhanced Development of Palmprints and FootprintsBased on NaYF4: Yb, Er Upconversion Luminescent Nanomaterials[J]. Chinese Journal of Analytical Chemistry, 2023, 51(11): 1774-1782. doi: 10.1063/1.4978855
|
[4] |
郑天程, 李 月, 刘钰铃, 等. Cs2ZnCl4∶Ce3+, Mn2+的合成及其多模发光性能[J]. 应用化学,2023,40(12):1613-1622.
ZHENG Tian-Cheng, LI Yue, LIU Yu-Ling, et al. Synthesis and Multi-Mode Luminescence Properties of Cs2ZnCl4∶Ce3+,Mn2+[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1613-1622.
|
[5] |
LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110. doi: 10.1364/AOP.10.000043
|
[6] |
王俊荣,孙倩倩,朱国庆,等. 稀土掺杂正交发光纳米晶:从基础到前沿应用[J]. 应用化学,2023,40(11):1475‐1493.
WANG Jun-Rong,SUN Qian-Qian,ZHU Guo-Qing, et al. Rare-Earth-Doped Orthogonal Luminescent Nanocrystals:From Fundamentals to Frontier Applications[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1475‐1493.
|
[7] |
王晓莹,涂昊宇,李琪,等. 基于石墨烯掺杂的CuMOF/Cu(OH)2纳米棒阵列自支撑电极的制备及用于葡萄糖检测[J]. 分析化学,2023,51(9):1441-1451.
WANG X Y, TU H Y, LI Q, et al. Efficient Electrochemical Sensor for Glucose DetectionBased on Self-Supporting Electrode of Graphene DopedCuMOF/Cu(OH)2 Nanorod Arrays[J]. Chinese Journal of Applied Chemistry, 2023, 51(9): 1441-1451.
|
[8] |
DING SH J, LI H Y, ZHANG Q L, et al. The investigations of Dy: YAG and Dy, Tb: YAG as potentially efficient GaN blue LD pumped solid state yellow laser crystals[J]. Journal of Luminescence, 2021, 237: 118174. doi: 10.1016/j.jlumin.2021.118174
|
[9] |
胡萍, 刘晓萌, 田颖, 等. 直接泵浦中红外Dy: PbGa2S4激光器研究进展[J]. 发光学报,2022,43(12):1905-1914. doi: 10.37188/CJL.20220203
HU P, LIU X M, TIAN Y, et al. Research progress of directly pumped mid-infrared Dy: PbGa2S4 lasers[J]. Chinese Journal of Luminescence, 2022, 43(12): 1905-1914. (in Chinese). doi: 10.37188/CJL.20220203
|
[10] |
龚宏波, 胡伟晔, 黄秋婷, 等. 基于表面增强拉曼光谱技术对负电性分子的高灵敏定性分析[J]. 分析化学,2023,51(7):1213-1221.
GONG H B, HU W Y, HUANG Q T, et al. Highly Sensitive Qualitative Analysis of ElectronegativeMolecules Based on Surface-enhanced Raman Spectroscopy[J]. Chinese Journal of Applied Chemistry, 2023, 51(7): 1213-1221.
|
[11] |
BENZ F, STRUNK H P, SCHAAB J, et al. Tuning the emission colour by manipulating terbium-terbium interactions: terbium doped aluminum nitride as an example system[J]. Journal of Applied Physics, 2013, 114(7): 073518. doi: 10.1063/1.4818815
|
[12] |
GUERRA J A, MONTAÑEZ L, WINNACKER A, et al. Thermal activation and temperature dependent PL and CL of Tb doped amorphous AlN and SiN thin films[J]. Physica Status Solidi C, 2015, 12(8): 1183-1186. doi: 10.1002/pssc.201400226
|
[13] |
WANG W, WANG X B, ZHANG P, et al. Near-white emission observed in Dy doped AlN[J]. RSC Advances, 2016, 6(60): 54801-54805. doi: 10.1039/C6RA03815H
|
[14] |
马海, 王晓丹, 李祥, 等. Eu3+, Dy3+共注入AlN薄膜结构和发光特性研究[J]. 光子学报,2020,49(8):0831001. doi: 10.3788/gzxb20204908.0831001
MA H, WANG X D, LI X, et al. Structure and luminescence properties of Eu3+ and Dy3+ Co-implanted AlN films[J]. Acta Photonica Sinica, 2020, 49(8): 0831001. (in Chinese). doi: 10.3788/gzxb20204908.0831001
|
[15] |
BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy, Tb: LiLuF4[J]. Optics Letters, 2014, 39(23): 6628-6631. doi: 10.1364/OL.39.006628
|
[16] |
SUN Y, YU F, LIAO M S, et al. Visible emission and energy transfer in Tb3+/Dy3+ co-doped phosphate glasses[J]. Journal of the American Ceramic Society, 2020, 103(12): 6847-6859. doi: 10.1111/jace.17391
|
[17] |
贾珂, 曾佳汇, 韩甜甜, 等. Dy3+单掺、Tb3+单掺和Tb3+/Dy3+共掺碲锗钡酸盐玻璃的发光性能研究[J]. 激光与光电子学进展,2022,59(15):1516012.
JIA K, ZENG J H, HAN T T, et al. Luminescent performance study on Dy3+-doped, Tb3+-doped and Tb3+/Dy3+ codoped TeO2-GeO2-BaO glasses[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516012. (in Chinese).
|
[18] |
RONG X, WANG X Q, CHEN G, et al. Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy[J]. Superlattices and Microstructures, 2016, 93: 27-31. doi: 10.1016/j.spmi.2016.02.050
|
[19] |
SUMATHI R R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds[J]. CrystEngComm, 2013, 15(12): 2232-2240. doi: 10.1039/C2CE26599K
|
[20] |
KALLEL T, DAMMAK M, WANG J, et al. Raman characterization and stress analysis of AlN: Er3+ epilayers grown on sapphire and silicon substrates[J]. Materials Science and Engineering: B, 2014, 187: 46-52. doi: 10.1016/j.mseb.2014.04.003
|
[21] |
RUTERANA P, CHAUVAT M P, LORENZ K. Mechanisms of damage formation during rare earth ion implantation in nitride semiconductors[J]. Japanese Journal of Applied Physics, 2013, 52(11S): 11NH02. doi: 10.7567/JJAP.52.11NH02
|
[22] |
WEI W W, PENG Y, WANG J B, et al. Temperature dependence of stress and optical properties in AlN films grown by MOCVD[J]. Nanomaterials, 2021, 11(3): 698. doi: 10.3390/nano11030698
|
[23] |
WANG D, WANG X D, MA H, et al. Structure and cathodoluminescence properties of Dy3+ and Eu3+ co-doped AlN films[J]. Optical Materials, 2022, 128: 112366. doi: 10.1016/j.optmat.2022.112366
|
[24] |
SARON K M A, HASHIM M R, FARRUKH M A. NH3-free growth of GaN nanostructure on n-Si (111) substrate using a conventional thermal evaporation technique[J]. Journal of Crystal Growth, 2012, 349(1): 19-23. doi: 10.1016/j.jcrysgro.2012.03.046
|
[25] |
李嘉豪, 韩军, 邢艳辉, 等. 不同Mo层厚度的AlN/Mo/Sc0.2Al0.8N复合结构上MOCVD外延GaN[J]. 发光学报,2023,44(6):1077-1084. doi: 10.37188/CJL.20220406
LI J H, HAN J, XING Y H, et al. GaN grown on sputtered AlN/Mo/Sc0.2Al0.8N composite structure with different Mo thickness[J]. Chinese Journal of Luminescence, 2023, 44(6): 1077-1084. (in Chinese). doi: 10.37188/CJL.20220406
|
[26] |
HSOUNA N, BOUZIDI C. White luminescence and energy transfer studies in Tb3+-Eu3+ co-doped phosphate glasses[J]. Solid State Sciences, 2022, 134: 107053. doi: 10.1016/j.solidstatesciences.2022.107053
|
[27] |
WANG Q SH, LI J H, ZHANG W, et al. Synthesis, and photoluminescence and magnetic properties of Tb-doped AlN single-crystalline nanobelts[J]. Journal of Luminescence, 2021, 236: 118089. doi: 10.1016/j.jlumin.2021.118089
|
[28] |
RODRIGUES J, FIALHO M, MAGALHAES S, et al. Luminescence properties of MOCVD grown Al0.2Ga0.8N layers implanted with Tb[J]. Journal of Luminescence, 2019, 210: 413-424. doi: 10.1016/j.jlumin.2019.02.060
|
[29] |
白海斌, 陈昕, 沙雪竹, 等. NaGd(MoO4)2: Tb3+荧光粉的温度及浓度依赖发光与荧光动力学温度传感[J]. 发光学报,2023,44(10):1770-1778. doi: 10.37188/CJL.20230165
BAI H B, CHEN X, SHA X ZH, et al. Temperature- and concentration-dependent luminescence and fluorescence dynamic temperature sensing of NaGd(MoO4)2: Tb3+ phosphors[J]. Chinese Journal of Luminescence, 2023, 44(10): 1770-1778. (in Chinese). doi: 10.37188/CJL.20230165
|
[30] |
CAO R P, CHEN C P, CHENG F R, et al. Synthesis and luminescence properties of Eu3+, Dy3+ co-doped Ca3Bi(PO4)3 single-phase phosphor[J]. Journal of Luminescence, 2023, 257: 119731. doi: 10.1016/j.jlumin.2023.119731
|
[31] |
方高阳, 王燕, 游振宇, 等. Sr3Gd(BO3)3: Dy3+/RE3+(RE=Tb, Eu)晶体的生长、发光性质及能量传递[J]. 发光学报,2022,43(11):1721-1732. doi: 10.37188/CJL.20220094
FANG G Y, WANG Y, YOU ZH Y, et al. Crystal growth, spectral properties and energy transfer mechanisms of Sr3Gd(BO3)3: Dy3+/RE3+(RE=Tb, Eu) crystals[J]. Chinese Journal of Luminescence, 2022, 43(11): 1721-1732. (in Chinese). doi: 10.37188/CJL.20220094
|
[32] |
LUO X, WANG X D, MENG H CH, et al. Structure and cathodoluminescence properties in Tb3+ and Eu3+ doped AlN films[J]. Physica Status Solidi (A), 2024, 221(4): 2300625. doi: 10.1002/pssa.202300625
|
[33] |
VIJAYAKUMAR M, VISWANATHAN K, MARIMUTHU K. Structural and optical studies on Dy3+: Tb3+ co-doped zinc leadfluoro-borophosphate glasses for white light applications[J]. Journal of Alloys and Compounds, 2018, 745: 306-318. doi: 10.1016/j.jallcom.2018.02.211
|
[34] |
JIAO Y H, WU X L, REN Q, et al. Photoluminescence and energy transfer of a color tunable phosphors: Sr3La (BO3)3: Ln3+ (Ln = Dy, Eu, Tb) for warm white light UV-excited WLEDs[J]. Optics & Laser Technology, 2019, 109: 470-479.
|
[35] |
NASTASI M, MAYER J W. Ion Implantation and Synthesis of Materials [M]. Berlin, Heidelberg: Springer, 2006.
|
[36] |
SU L M, LIU Y J, LI G H, et al. Multicolor emission leading by energy transfer between Dy3+ and Eu3+ in wolframite InNbTiO6[J]. Journal of Luminescence, 2020, 227: 117578. doi: 10.1016/j.jlumin.2020.117578
|
[37] |
李敏, 孙晓园, 范小暄, 等. Sr6Lu2Al4O15: Tb3+荧光粉的发光特性[J]. 发光学报,2023,44(11):1940-1949. doi: 10.37188/CJL.20230147
LI M, SUN X Y, FAN X X, et al. Photoluminescence properties of Sr6Lu2Al4O15: Tb3+ phosphor[J]. Chinese Journal of Luminescence, 2023, 44(11): 1940-1949. (in Chinese). doi: 10.37188/CJL.20230147
|
[38] |
DEXTER D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 1953, 21(5): 836-850. doi: 10.1063/1.1699044
|
[39] |
MILLER M P, WRIGHT J C. Multiphonon and energy transfer relaxation in charge compensated crystals[J]. The Journal of Chemical Physics, 1979, 71(1): 324-338. doi: 10.1063/1.438074
|
[40] |
VIDYADHARAN V, MOHAN P R, JOSEPH C, et al. Luminescent characteristics of UV excited Sr0.5Ca0.5TiO3: Pr3+ reddish-orange phosphor[J]. Materials Chemistry and Physics, 2016, 170: 38-43. doi: 10.1016/j.matchemphys.2015.12.016
|
[41] |
MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates[J]. Color Research & Application, 1992, 17(2): 142-144.
|