Citation: | SONG Chang-xiao, YU Xin, BAI Su-ping, JIANG Dong-xu, LIU Cai, GUAN Miao-xin, HAN Jia-hao. Design of athermalization optical machine structure for optical axis stability detection system[J]. Chinese Optics, 2024, 17(4): 909-920. doi: 10.37188/CO.2023-0226 |
The alignment accuracy of the emitting and receiving optical axes of laser communication equipment in the satellite ground field is crucial. Temperature fluctuation can cause deformations of optical components and mechanical structures, affecting the optical axis’ alignment and reducing the system’s detection accuracy. We design a high-precision optical axis stability system for detection. First, according to the technical requirements of broadband and conjugate imaging, an off-axis reflective Keplerian telescope system with image transfer was applied to compress the beam. After passing through a beam splitter, the beams entered the detection subunit separately. A long focal length optical axis stability detection system was designed to improve detection accuracy. To correct the thermal difference of the reflective system, an optical passive non-thermalization technique was employed using a refractive mirror group to compensate for the thermal-induced aberration of the reflective mirror group. The mechanical structure was designed and subjected to finite element analysis. Finite element data were processed and fed into optical software to simulate the optical axis deviation angle caused by temperature fluctuation. Finally, experiments were conducted for validation. The results show that the optical axis stability detection system has an optical axis deviation angle of 3.90" at −10 °C and 4.23" at 45 °C, reducing the impact of temperature fluctuation on optical axis deviation.
[1] |
曾垂峰, 欧阳义国. 基于光机热集成分析的光学系统光轴稳定性研究[J]. 光学与光电技术,2021,19(6):50-56.
ZENG CH F, OUYANG Y G. Research on optical axis stability of optical system based on thermal-structural-optical integrated analysis[J]. Optics & Optoelectronic Technology, 2021, 19(6): 50-56. (in Chinese).
|
[2] |
贾文武, 刘培正, 唐自力, 等. 靶场适用的光电经纬仪光轴平行性检测[J]. 光学 精密工程,2020,28(8):1670-1677.
JIA W W, LIU P ZH, TANG Z L, et al. Detection method for optical-axis parallelism of photoelectric theodolite in range[J]. Optics and Precision Engineering, 2020, 28(8): 1670-1677. (in Chinese).
|
[3] |
徐丹慧, 唐霞辉, 方国明, 等. 基于干涉条纹的光轴平行性校准方法[J]. 光学学报,2020,40(17):1712005. doi: 10.3788/AOS202040.1712005
XU D H, TANG X H, FANG G M, et al. Method for calibration of optical axis parallelism based on interference fringes[J]. Acta Optica Sinica, 2020, 40(17): 1712005. (in Chinese). doi: 10.3788/AOS202040.1712005
|
[4] |
张缓缓, 任兰旭, 宋延松, 等. 激光通信终端光学收发通道运动学支撑设计[J]. 长春理工大学学报(自然科学版),2021,44(5):19-26.
ZHANG H H, REN L X, SONG Y S, et al. Kinematic support design of optical transmitter and receiver channel of laser communication terminal[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(5): 19-26. (in Chinese).
|
[5] |
王学新, 焦明印. 红外光学系统无热化设计方法的研究[J]. 应用光学,2009,30(1):129-133.
WANG X X, JIAO M Y. Athermalization design for infrared optical systems[J]. Journal of Applied Optics, 2009, 30(1): 129-133. (in Chinese).
|
[6] |
文明. 离轴反射系统主动光学校正及波前补偿方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
WEN M. Research on active optical correction and wavefront compensation methods for off-axis reflective systems[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, China), 2021. (in Chinese).
|
[7] |
李卓, 叶宗民, 孙保杰, 等. 3.7~4.8μm红外二次成像折反射式光学系统设计[J]. 红外技术,2021,43(12):1193-1196.
LI ZH, YE Z M, SUN B J, et al. Design of a 3.7~4.8μm catadioptric secondary imaging MWIR optical system[J]. Infrared Technology, 2021, 43(12): 1193-1196. (in Chinese).
|
[8] |
周欣茹, 宋华堂, 朱润徽, 等. 结构紧凑型大相对孔径离轴两反自由曲面望远光学系统设计[J]. 光子学报,2020,49(10):1002002. doi: 10.3788/gzxb20204910.1002002
ZHOU X R, SONG H T, ZHU R H, et al. Compact off-axis two-mirror freeform telescopic optical system design with large relative aperture[J]. Acta Photonica Sinica, 2020, 49(10): 1002002. (in Chinese). doi: 10.3788/gzxb20204910.1002002
|
[9] |
郭占利. 可见/红外共口径变焦光学系统的研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.
GUO ZH L. Study on visible/infrared common aperture zoom optical system[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2018. (in Chinese).
|
[10] |
宋红红, 刘婷, 钱俊宏, 等. 离轴两反无焦系统镜面结构选择及优化[J]. 应用光学,2022,43(2):204-212. doi: 10.5768/JAO202243.0201004
SONG H H, LIU T, QIAN J H, et al. Selection and optimization of mirror structure of off-axis two-mirror afocal system[J]. Journal of Applied Optics, 2022, 43(2): 204-212. (in Chinese). doi: 10.5768/JAO202243.0201004
|
[11] |
李晶. 基于次镜像移补偿的航空折反式光学系统降敏与无热化技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.
LI J. Research on the desensitization and athermal technology of aerial catadioptric optical system based on secondary mirror image motion compensation[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2023. (in Chinese).
|
[12] |
TAMAGAWA Y, TAJIME T. Expansion of an athermal chart into a multilens system with thick lenses spaced apart[J]. Optical Engineering, 1996, 35(10): 3001-3006. doi: 10.1117/1.600984
|
[13] |
潘国涛, 闫钰锋, 于信, 等. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317. doi: 10.37188/CO.2021-0130
PAN G T, YAN Y F, YU X, et al. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. (in Chinese). doi: 10.37188/CO.2021-0130
|
[14] |
于亚琼, 王灵杰, 赵尚男, 等. 二维大视场离轴反射式光学系统设计[J]. 光学 精密工程,2023,31(14):2019-2030. doi: 10.37188/OPE.20233114.2019
YU Y Q, WANG L J, ZHAO SH N, et al. Optical design of the off-axis reflective system with wide fov[J]. Optics and Precision Engineering, 2023, 31(14): 2019-2030. (in Chinese). doi: 10.37188/OPE.20233114.2019
|