Volume 17 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
WANG Jin-jiang, JIANG Lun, TONG Shou-feng, PEI Hui-yi, CUI Yong, GUO Ming-hang. Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer[J]. Chinese Optics, 2024, 17(6): 1489-1511. doi: 10.37188/CO.2023-0234
Citation: WANG Jin-jiang, JIANG Lun, TONG Shou-feng, PEI Hui-yi, CUI Yong, GUO Ming-hang. Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer[J]. Chinese Optics, 2024, 17(6): 1489-1511. doi: 10.37188/CO.2023-0234

Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer

cstr: 32171.14.CO.2023-0234
Funds:  Supported by National Key Research and Development Program of China (No. 2022YFB3902500); Key Research and Development Program of Jilin Province (No. 20230201006GX)
More Information
  • Author Bio:

    Wang Jin-jiang (1998—), male, born in Hanzhong, Shaanxi Province, master candidate, He received his bachelor's degree from Changchun University of Science and Technology in 2021,mainly engaged in space optical technology and other aspects of research. E-mail: 13843075373@163.com

    TONG Shou-feng (1972—), male, born in Changchun, Jilin Province. Ph.D., Professor and Doctoral Supervisor. He received his Ph.D. from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2000. He is mainly engaged in space remote sensing and laser communication research. E-mail: tsf1998@sina.com

  • Corresponding author: tsf1998@sina.com
  • Received Date: 23 Dec 2023
  • Rev Recd Date: 18 Jan 2024
  • Accepted Date: 08 Mar 2024
  • Available Online: 10 May 2024
  • In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne (DASH) interferometer in harsh temperatures, an opto-mechanical-thermal integration analysis is carried out. Firstly, the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer. Secondly, the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed. The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis, and the phase error caused by thermal deformation is obtained by fitting. Finally, based on the wind speed error caused by thermal deformation of each component, a reasonable temperature control scheme is proposed. The results show that the interference module occupies the main cause, the temperature must be controlled within (20±0.05) °C, and the temperature control should be carried out for the temperature sensitive parts, and the wind speed error caused by the part is 3.8 m/s. The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause, which should be controlled within (20±2) °C, and the wind speed error caused by the part is 3.05 m/s. In summary, the wind measurement error caused by interference module, imaging optical system, and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s. The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.

     

  • loading
  • [1]
    YE S, FANG Y H, HONG J, et al. Development and application of spatial heterodyne spectroscopy[J]. Chinese Journal of Scientific Instrument, 2006, 27(6 Suppl 1): 983-985. (in Chinese).
    [2]
    SHEN J, WANG G J. Doppler asymmetric spatial external aberration spectroscopy for wind field detection[J]. Electronic Technology & Software Engineering, 2020(11): 95-97. (in Chinese).
    [3]
    BABCOCK D D. Development of a space flight prototype Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer for the measurement of upper atmospheric winds[R]. ELLICOTT: ARTEP INC, 2011.
    [4]
    SOLHEIM B, BROWN S, SIORIS C, et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 2015, 53(1): 50-57. doi: 10.1080/07055900.2013.855160
    [5]
    ENGLERT C R, HARLANDER J M, MARR K D, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on-orbit wind observations: data analysis and instrument performance[J]. Space Science Reviews, 2023, 219(3): 27. doi: 10.1007/s11214-023-00971-1
    [6]
    张亚飞. 星载热层风场探测多普勒差分干涉仪反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2023.

    ZHANG Y F. Research on wind field retrieval technology of spaceborne Doppler asymmetric spatical heterodyne interferometer[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2023. (in Chinese).
    [7]
    ENGLERT C R, HARLANDER J M, EMMERT J T, et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 2010, 18(26): 27416-27430. doi: 10.1364/OE.18.027416
    [8]
    LUO H Y, SHI H L, LI ZH W, et al. Thermal effect on optical properties of spatial heterodyne spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2578-2581. (in Chinese). doi: 10.3964/j.issn.1000-0593(2014)09-2578-04
    [9]
    FU D, CHANG CH G, SUN J, et al. Separating and testing method for influencing factors of phase stability of Doppler asymmetric spatial heterodyne interferometer for atmospheric wind-field detection[J]. Acta Optica Sinica, 2022, 42(18): 1801003. (in Chinese). doi: 10.3788/AOS202242.1801003
    [10]
    ENGLERT C R, HARLANDER J M, BABCOCK D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[J]. Proceedings of SPIE, 2007, 6303: 63030T.
    [11]
    ENGLERT C R, BABCOCK D D, HARLANDER J, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): First laboratory demonstration of an innovative concept for measuring winds in planetary atmospheres[C]. 37th COSPAR Scientific Assembly. 2007: 272-279.
    [12]
    沈静. 中高层大气风场探测多普勒非对称空间外差技术研究[D]. 合肥: 中国科学技术大学, 2017.

    SHEN J. Doppler asymmetric spatial heterodyne technique for wind detection in the upper atmosphere[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese).
    [13]
    况银丽. 基于非对称空间外差干涉仪的多普勒测速技术研究[D]. 中国科学院大学(中国科学院光电技术研究所), 2020.

    KUANG Y L. Research on radial velocity measurement technology based on Doppler asymmetric space heterodyne interferometer[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese).
    [14]
    陈洁婧. 多普勒差分干涉光谱仪风速反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.

    CHEN J J. Study on Doppler asymmetric spatial heterodyne spectrometer in wind velocity retrieval[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. (in Chinese).
    [15]
    LUO H Y, LI SH, SHI H L, et al. Optical design of imaging system based on spatial heterodyne spectrometer[J]. Infrared and Laser Engineering, 2016, 45(8): 818005. doi: 10.3788/IRLA201645.0818005
    [16]
    LIU H, JIANG L, ZHANG X F, et al. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018
    [17]
    FU D, ZHAO H X, LI J, et al. Simulation of mesosphere wind measurement with multiple emission lines of the O2(0-1) band using space-based Doppler asymmetric spatial heterodyne[J]. Atmosphere, 2022, 13(8): 1309. doi: 10.3390/atmos13081309
    [18]
    LI W W, HUI N J, LI C X, et al. A comparative study of three methods to detect the upper atmospheric wind speed by DASH[J]. Journal of Physics, 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292
    [19]
    朱承希. 红外成像系统的光机热集成分析及散热设计[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    ZHU CH X. Thermal/structural/optical integrated analysis and thermal design of infrared imaging system[D]. Shanghai: Shanghai Institute of Technology Physics, Chinese Academy of Sciences, 2014. (in Chinese).
    [20]
    WEI D K, ZHU Y J, LIU J, et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 2020, 28(14): 19887-19900. doi: 10.1364/OE.394101
    [21]
    尹诗. 实条纹空间外差成像光谱技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.

    YIN SH. Research on real-fringe spatial heterodyne imaging spectroscopy[D]. Xi'an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2018. (in Chinese).
    [22]
    刘盛典. 非均匀温度变化对卡塞格伦式光学系统的影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2015,doi: 10.7666/d.D754621.

    LIU SH D. Non uniform temperature change analysis of influence on the cassegrain optical system[D]. Harbin: Harbin Institute of Technology, 2015,doi: 10.7666/d.D754621. (in Chinese).
    [23]
    DU W F, LIU Y ZH, GAO W J, et al. Analysis of passive athermalization structure design and integrated opto-mechanical-thermal of zoom lens of photoelectric countermeasure platform[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204. (in Chinese).
    [24]
    ZHANG Y, DING ZH M, ZHAO H J, et al. Rigid-body displacement separation of optics in optical structural-thermal integrated analysis[J]. Infrared and Laser Engineering, 2012, 41(10): 2763-2767. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.10.039
    [25]
    DOYLE K B, Genberg V L, MICHELS G J, et al. Optical modeling of finite element surface displacements using commercial software[J]. Proceedings of SPIE, 2005, 5867: 58670I. doi: 10.1117/12.615336
    [26]
    汪丽. 干涉法大气风场探测技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2007.

    WANG L. Study on wind measurement of atmosphere by interferometry technology[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2007. (in Chinese).
    [27]
    ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 2017, 212(1-2): 553-584. doi: 10.1007/s11214-017-0358-4
    [28]
    SHEN J, XIONG W, SHI H L, et al. Absolute phase drift analysis and correction of asymmetric spatial heterodyne interferometer for wind detection[J]. Acta Optica Sinica, 2017, 37(4): 0430003. (in Chinese). doi: 10.3788/AOS201737.0430003
    [29]
    HARLANDER J M, ENGLERT C R, BABCOCK D D. Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometefor upper atmospheric red line (630 nm) wind and temperature observations[C]. 38th COSPAR Scientific Assembly, 2010.
    [30]
    MARR K D, ENGLERT C R, HARLANDER J M. Measurement and modeling of the thermal behavior of a laboratory DASH interferometer[J]. Proceedings of SPIE, 2012, 8493: 849302. doi: 10.1117/12.928984
    [31]
    CAO Y Q. Design of double telecentric lens using machine vision system[J]. Infrared Technology, 2022, 44(2): 140-144. (in Chinese). doi: 10.11846/j.issn.1001-8891.2022.2.hwjs202202006
    [32]
    FENG Y T, FU D, ZHAO Z L, et al. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011. (in Chinese). doi: 10.3788/AOS221462
    [33]
    YANG Y, CHEN SH J, ZHANG W. Review of thermal-structural-optical integrated analysis of space remote sensor[J]. Optical Technique, 2005, 31(6): 913-917,920. (in Chinese). doi: 10.3321/j.issn:1002-1582.2005.06.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(34)  / Tables(2)

    Article views(250) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return