Volume 17 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
LIU Song-kun, LIU Zhi-ying. Design and analysis of the Galileo-type Monocentric multiscale system[J]. Chinese Optics, 2024, 17(5): 1192-1198. doi: 10.37188/CO.2023-0238
Citation: LIU Song-kun, LIU Zhi-ying. Design and analysis of the Galileo-type Monocentric multiscale system[J]. Chinese Optics, 2024, 17(5): 1192-1198. doi: 10.37188/CO.2023-0238

Design and analysis of the Galileo-type Monocentric multiscale system

Funds:  Supported by the National Major Scientific Instruments and Equipments Development Project (No. 52127809); Key R & D Projects of Jilin Province (No. 20240302008GX)
More Information
  • Corresponding author: lzycccccc@126.com
  • Received Date: 28 Dec 2023
  • Rev Recd Date: 30 Jan 2024
  • Accepted Date: 15 Apr 2024
  • Available Online: 10 May 2024
  • Monocentric multiscale systems offer the advantages of miniaturization and a large field of view. In order to further realize the miniaturization and light weight of the large field-of-view system, we adopt the Galileo-type monocentric multiscale system form and design a monocentric multiscale system operating in the visible spectrum. The modulation transfer function of the system is greater than 0.3 at a frequency of 208 lp/mm, the root-mean-square radius of the full-field diffuse spot is smaller than the detector pixel size of 2.4 μm, and the imaging quality is close to the diffraction limit. The monocentric multiscale system structure has a couple of special characteristics: the relay lenses are closely arranged and the crosstalk stray light between the relay lenses seriously affects the imaging quality. To solve the problem, we apply the method of suppressing the crosstalk stray light with the built-in stary light stop. On the basis, we carry out the simulation and analysis of the stray light of the optical system. Analysis results show that the stray light coefficients are all reduced to less than 1×10−6 after the addition of the stray light stop, which verifies the crosstalk stray light suppression method.

     

  • loading
  • [1]
    张裕, 张越, 张宁, 等. 基于逆深度滤波的双目折反射全景相机动态SLAM系统[J]. 光学 精密工程,2022,30(11):1282-1289. doi: 10.37188/OPE.20223011.1282

    ZHANG Y, ZHANG Y, ZHANG N, et al. Dynamic SLAM of binocular catadioptric panoramic camera based on inverse depth filter[J]. Optics and Precision Engineering, 2022, 30(11): 1282-1289. (in Chinese). doi: 10.37188/OPE.20223011.1282
    [2]
    吕丽军, 吴学伟. 鱼眼镜头初始结构的设计[J]. 光学学报,2017,37(2):0208001. doi: 10.3788/AOS201737.0208001

    LV L J, WU X W. Design of initial structure of fisheye lens[J]. Acta Optica Sinica, 2017, 37(2): 0208001. (in Chinese). doi: 10.3788/AOS201737.0208001
    [3]
    史光辉, 杨威. 用于图像拼接的电视摄像光学系统[J]. 中国光学,2014,7(4):638-643.

    SHI G H, YANG W. Optical system used to compose images in television photograph[J]. Chinese Optics, 2014, 7(4): 638-643. (in Chinese).
    [4]
    ZHANG SH SH, WU Q, LIU CH Y, et al. Bio-inspired spherical compound eye camera for simultaneous wide-band and large field of view imaging[J]. Optics Express, 2022, 30(12): 20952-20962. doi: 10.1364/OE.454530
    [5]
    LIU J H, ZHANG Y J, XU H R, et al. Long-working-distance 3D measurement with a bionic curved compound-eye camera[J]. Optics Express, 2022, 30(20): 36985-36995. doi: 10.1364/OE.473620
    [6]
    KITTLE, DAVIDS S, DANIEL L, MARKs, et al. Automated calibration and optical testing of the AWARE-2 gigapixel multiscale camera[J]. Digital Photography IX, 2013, 8660: 40-48.
    [7]
    MARKS D L, LLULL P R, PHILLIPS Z, et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager[J]. Applied Optics, 2014, 53(13): C54-C63.
    [8]
    TREMBLAY E J, MARKS D L, BRADY D J, et al. Design and scaling of monocentric multiscale imagers[J]. Applied Optics, 2012, 51(20): 4691-4702.
    [9]
    沈阳. 基于同心球镜的超大视场光学系统研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.

    SHEN Y. Research on super large field of view optical imaging technology based on concentric lens[D]. Xi’an: University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics of CAS), 2019. (in Chinese).
    [10]
    刘飞, 刘佳维, 邵晓鹏. 高集成度小型化共心多尺度光学系统设计[J]. 光学 精密工程,2020,28(6):1275-1282. doi: 10.3788/OPE.20202806.1275

    LIU F, LIU J W, SHAO X P. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 2020, 28(6): 1275-1282. (in Chinese). doi: 10.3788/OPE.20202806.1275
    [11]
    HUANG Y H, FU Y G, ZHANG G Y, et al. Modeling and analysis of a monocentric multi-scale optical system[J]. Optics Express, 2020, 28(22): 32657-32675. doi: 10.1364/OE.406213
    [12]
    高伟饶, 董科研, 江伦. 单波长激光通信终端的隔离度[J]. 中国光学(中英文),2023,16(5):1137-1148. doi: 10.37188/CO.2022-0253

    GAO W R, DONG K Y, JIANG L. Isolation of single wavelength laser communication terminals[J]. Chinese Optics, 2023, 16(5): 1137-1148. (in Chinese). doi: 10.37188/CO.2022-0253
    [13]
    李禹衡, 刘智颖, 黄蕴涵, 等. 小型化全景系统的杂散光分析与抑制方法研究[J]. 应用光学,2020,41(3):455-461. doi: 10.5768/JAO202041.0301004

    LI Y H, LIU ZH Y, HUANG Y H, et al. Analysis and suppression of stray light in miniaturized panoramic system[J]. Journal of Applied Optics, 2020, 41(3): 455-461. (in Chinese). doi: 10.5768/JAO202041.0301004
    [14]
    陈醒, 胡春晖, 颜昌翔, 等. 大视场空间可见光相机的杂散光分析与抑制[J]. 中国光学,2019,12(3):678-685. doi: 10.3788/co.20191203.0678

    CHEN X, HU CH H, YAN CH X, et al. Analysis and suppression of space stray light of visible cameras with wide field of view[J]. Chinese Optics, 2019, 12(3): 678-685. (in Chinese). doi: 10.3788/co.20191203.0678
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(164) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return