Volume 17 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
LIU Guo-rong, DAI Yan-yan, ZHU Wei-jun, CHU Run-tong, YUAN Ping, SUN Dui-xiong, MA Yun-yun. Radial structure and optical radiation characteristics of the cloud-ground lightning channel[J]. Chinese Optics, 2024, 17(5): 1175-1182. doi: 10.37188/CO.2024-0017
Citation: LIU Guo-rong, DAI Yan-yan, ZHU Wei-jun, CHU Run-tong, YUAN Ping, SUN Dui-xiong, MA Yun-yun. Radial structure and optical radiation characteristics of the cloud-ground lightning channel[J]. Chinese Optics, 2024, 17(5): 1175-1182. doi: 10.37188/CO.2024-0017

Radial structure and optical radiation characteristics of the cloud-ground lightning channel

Funds:  Supported by the National Natural Science Foundation of China (No. 62065011)
More Information
  • Corresponding author: liugr07@163.com
  • Received Date: 17 Jan 2024
  • Rev Recd Date: 22 Feb 2024
  • Accepted Date: 15 Apr 2024
  • Available Online: 10 May 2024
  • For revealing the microphysical mechanism of the formation and development of the cloud-ground lightning channel, the radial structure and optical radiation characteristics of the cloud-ground lightning channel were studied. We carried out field observation experiments in the Qinghai Plateau region using a slit-less high-speed spectrograph. The clearly visible channel core was recorded in a cloud-ground lightning, and a weak luminescent region was found between the outer edge of the channel core and the external luminescent channel. Based on the spectral observation results, the optical radiation characteristics of the first return stroke and the third subsequent return stroke were compared and analyzed. The corona sheath model of the lightning channel was verified experimentally, the location of the connection point was determined. The estimated striking distance of the two return strokes is 57 m and 53 m respectively, and the strongest point of the return discharge is confirmed at the connection point. It can be inferred that in the initial stage of the return stroke, the cloud ground lightning return stroke channel consists of the channel core , the weak luminescence region and the outer corona sheath from the inside to the outside, that is, the charge distribution along the radial direction of the lightning channel is uneven. The light radiation characteristics of lightning channel are closely related to the intensity and duration of discharge.

     

  • loading
  • [1]
    PIERCE E T. The development of lightning discharges[J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(348): 229-240. doi: 10.1002/qj.49708134809
    [2]
    MASLOWSKI G, RAKOV V A. A study of the lightning channel corona sheath[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D14): D14110.
    [3]
    CVETIC J, HEIDLER F, MARKOVIC S, et al. Dynamics of a lightning corona sheath-A constant field approach using the generalized traveling current source return stroke model[J]. Atmospheric Research, 2012, 117: 122-131. doi: 10.1016/j.atmosres.2012.03.012
    [4]
    DENG H, YUAN P, AN T T, et al. Time-evolution characteristics of spectrum and temperature of lightning discharge plasma[J]. Journal of the Optical Society of America B, 2022, 39(12): 3320-3328. doi: 10.1364/JOSAB.475278
    [5]
    刘国荣, 朱维君, 褚润通, 等. 依据不同波段光谱诊断闪电回击通道温度[J]. 物理学报,2022,71(10):109201. doi: 10.7498/aps.71.20211673

    LIU G R, ZHU W J, CHU R T, et al. Diagnosis of lightning return stroke channel temperature according to different band spectra[J]. Acta Physica Sinica, 2022, 71(10): 109201. (in Chinese). doi: 10.7498/aps.71.20211673
    [6]
    WANG W SH, YUAN P, AN T T, et al. The propagation characteristics of the return-stroke electric wave in consideration of corona sheath[J]. Atmospheric Research, 2023, 292: 106849. doi: 10.1016/j.atmosres.2023.106849
    [7]
    AN T T, YUAN P, CEN J Y, et al. Temperature of apparent natural ball lightning obtained by examination of the spectra[J]. Physics of Plasmas, 2022, 29(11): 113503. doi: 10.1063/5.0098329
    [8]
    WANG W SH, YUAN P, HUANG X, et al. The initial radius of lightning return stroke channel and its relation with discharge intensity[J]. Atmospheric Research, 2022, 273: 106161. doi: 10.1016/j.atmosres.2022.106161
    [9]
    LIU G R, YUAN P, AN T T, et al. A visible channel core and the channel structure below the connection point for natural cloud-to-ground lightning[J]. Applied Physics Letters, 2019, 115(6): 064103. doi: 10.1063/1.5111845
    [10]
    WANG X J, YUAN P, CEN J Y, et al. Correlation between the spectral features and electric field changes of multiple return strokes in negative cloud-to-ground lightning[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(9): 4993-5002. doi: 10.1002/2016JD026200
    [11]
    SABA M M F, PAIVA A R, SCHUMANN C, et al. Lightning attachment process to common buildings[J]. Geophysical Research Letters, 2017, 44(9): 4368-4375. doi: 10.1002/2017GL072796
    [12]
    孔相金, 李博, 李寒霜, 等. 痕量气体掩星探测高光谱成像光谱仪光学系统设计[J]. 中国光学(中英文),2024,17(3):661-673.

    KONG X J, LI B, LI H S, et al. Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection[J]. Chinese Optics, 2024, 17(3): 661-673. (in Chinese).
    [13]
    张靖, 张博, 刘凯, 等. 狭缝高度对单色仪光谱分辨率的影响[J]. 中国光学(中英文),2023,16(6):1442-1449.

    ZHANG J, ZHANG B, LIU K, et al. WANG Kai-yang1Effect of slit height on the spectral resolution of a monochromator[J]. Chinese Optics, 2023, 16(6): 1442-1449. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(208) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return