Turn off MathJax
Article Contents
WANG Yuxin, ZHONG Shan, LIANG Wei, ZHAO Feng, ZHAN Zhiming, YAN Baiyi, KANG Songbai. Enhanced method for thermal frequency tuning of an self-injection locked laser[J]. Chinese Optics. doi: 10.37188/CO.2024-0025
Citation: WANG Yuxin, ZHONG Shan, LIANG Wei, ZHAO Feng, ZHAN Zhiming, YAN Baiyi, KANG Songbai. Enhanced method for thermal frequency tuning of an self-injection locked laser[J]. Chinese Optics. doi: 10.37188/CO.2024-0025

Enhanced method for thermal frequency tuning of an self-injection locked laser

doi: 10.37188/CO.2024-0025
Funds:  Supported by National Natural Science Foundation of China (No. 62075233); CAS Project for Young Scientists in Basic Research (No. YSBR-69); Innovation Program for Quantum Science and Technology (No. 2023ZD0301500)
More Information
  • Corresponding author: zf_lucky@apm.ac.cn
  • Received Date: 29 Jan 2024
  • Accepted Date: 26 Apr 2024
  • Available Online: 01 Jun 2024
  • Objective 

    In order to enhance the continuous tunable range of a self-injection-locked laser frequency, a study is conducted on the variation relationship of the injected locking phase of the FP microcavity during the frequency-thermal tuning process.

    Method 

    Building upon traditional frequency thermotuning methods, this study explores the characteristics of frequency and phase parameters of a self-injection locked laser. We proposed an improved algorithm that integrates injection locking phase compensation and DFB chip current compensation during frequency thermotuning. Experimental validation of this algorithm was conducted on a Fabry-Perot (FP) micro-cavity self-injection locked laser. The laser operates at a wavelength of 1550nm with a 3dB linewidth of 785Hz, achieving frequency thermotuning of the FP micro-cavity using a pair of heating resistors.

    Result 

    The enhanced algorithm is implemented within the microcontroller program of the laser's original drive control circuit. No modifications are made to the hardware components of the laser. Ultimately, this implementation achieves a continuous frequency tuning range of 6 GHz.

    Conclusion 

    This work provides a simple, efficient, and stable frequency tuning solution for self-injection-locked lasers, demonstrating high practicality and promising market prospects.

     

  • loading
  • [1]
    孙仕豪, 郑也, 于淼, 等. 基于多纵模振荡种子源的高功率窄线宽光纤激光器关键技术分析及研究现状[J]. 中国光学,2024,17(1):38-51. doi: 10.37188/CO.2023-0074

    SUN SH H, ZHENG Y, YU M, et al. Key technology analysis and research progress of high-power narrow linewidth fiber laser based on the multi-longitudinal-mode oscillator seed source[J]. Chinese Optics, 2024, 17(1): 38-51. (in Chinese). doi: 10.37188/CO.2023-0074
    [2]
    DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
    [3]
    LUDLOW A D, HUANG X, NOTCUTT M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15[J]. Optics Letters, 2007, 32(6): 641-643. doi: 10.1364/OL.32.000641
    [4]
    SAVCHENKOV A A, CHRISTENSEN J E, HUCUL D, et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy[J]. Scientific Reports, 2020, 10(1): 16494. doi: 10.1038/s41598-020-73373-w
    [5]
    LAI Y H, ELIYAHU D, GANJI S, et al. 780 nm narrow-linewidth self-injection-locked WGM lasers[J]. Proceedings of SPIE, 2020, 11266: 112660O.
    [6]
    NUNZI CONTI G, BARUCCI A, BERNESCHI S, et al. Coupling approaches and new geometries in whispering-gallery-mode resonators[J]. Proceedings of SPIE, 2012, 8236: 82360V. doi: 10.1117/12.909596
    [7]
    LI J CH, ZHANG B Y, YANG S G, et al. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector[J]. Photonics Research, 2021, 9(4): 558-566. doi: 10.1364/PRJ.412284
    [8]
    杜悦宁, 陈超, 秦莉, 等. 硅光子芯片外腔窄线宽半导体激光器[J]. 中国光学,2019,12(2):229-241. doi: 10.3788/co.20191202.0229

    DU Y N, CHEN CH, QIN L, et al. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. (in Chinese). doi: 10.3788/co.20191202.0229
    [9]
    ZHAO Y, LI Y, WANG Q, et al. 100-Hz Linewidth diode laser with external optical feedback[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1795-1798. doi: 10.1109/LPT.2012.2214029
    [10]
    刘云凤, 梁伟. 自注入锁定外腔超窄线宽半导体激光[J]. 中国激光,2021,48(17):1715001. doi: 10.3788/CJL202148.1715001

    LIU Y F, LIANG W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry-Perot cavity[J]. Chinese Journal of Lasers, 2021, 48(17): 1715001. (in Chinese). doi: 10.3788/CJL202148.1715001
    [11]
    SU Q SH, WEI F, CHEN CH, et al. A self-injection locked laser based on high-Q micro-ring resonator with adjustable feedback[J]. Journal of Lightwave Technology, 2023, 41(21): 6756-6763. doi: 10.1109/JLT.2023.3291753
    [12]
    ZHANG CH W, XU CH D, JIN Y, et al. Narrow linewidth semiconductor laser with a multi-period-delayed feedback photonic circuit[J]. Optics Express, 2022, 30(9): 15796-15806. doi: 10.1364/OE.458327
    [13]
    HULME J C, DOYLEND J K, BOWERS J E. Widely tunable Vernier ring laser on hybrid silicon[J]. Optics Express, 2013, 21(17): 19718-19722. doi: 10.1364/OE.21.019718
    [14]
    GUAN H, NOVACK A, GALFSKY T, et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication[J]. Optics Express, 2018, 26(7): 7920-7933. doi: 10.1364/OE.26.007920
    [15]
    REN M, CAI H, TAO J F, et al. A tunable laser using loop-back external cavity based on double ring resonators[C]. Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, IEEE, 2013: 1424-1427.
    [16]
    REN M, CAI H, TSAI J M, et al. A tunable laser using double-ring resonator external cavity via free-carrier dispersion effect[C]. 16th International Solid-State Sensors, Actuators and Microsystems Conference, IEEE, 2011: 1504-1507.
    [17]
    LIANG W, LIU Y F. Compact sub-hertz linewidth laser enabled by self-injection lock to a sub-milliliter FP cavity[J]. Optics Letters, 2023, 48(5): 1323-1326. doi: 10.1364/OL.481552
    [18]
    PENG Y. A novel scheme for hundred-hertz linewidth measurements with the self-heterodyne method[J]. Chinese Physics Letters, 2013, 30(8): 084208. doi: 10.1088/0256-307X/30/8/084208
    [19]
    KONDRATIEV N M, LOBANOV V E, CHERENKOV A V, et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 2017, 25(23): 28167-28178. doi: 10.1364/OE.25.028167
    [20]
    GALIEV R R, KONDRATIEV N M, LOBANOV V E, et al. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator[J]. Physical Review Applied, 2020, 14(1): 014036. doi: 10.1103/PhysRevApplied.14.014036
    [21]
    KONDRATIEV N M, LOBANOV V E, SHITIKOV A E, et al. Recent advances in laser self-injection locking to high-Q microresonators[J]. Frontiers of Physics, 2023, 18(2): 21305. doi: 10.1007/s11467-022-1245-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(122) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return