Volume 17 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
LIU Tao, ZHANG Ya-li. Non-contact blood oxygen saturation measurement in dynamic head scenes[J]. Chinese Optics, 2024, 17(6): 1377-1386. doi: 10.37188/CO.2024-0034
Citation: LIU Tao, ZHANG Ya-li. Non-contact blood oxygen saturation measurement in dynamic head scenes[J]. Chinese Optics, 2024, 17(6): 1377-1386. doi: 10.37188/CO.2024-0034

Non-contact blood oxygen saturation measurement in dynamic head scenes

cstr: 32171.14.CO.2024-0034
Funds:  Supported by National Key Research and Development Program of China (No. 2018YFC0808); Shaanxi Province Key Research and Development Project (No. 2019SF-260)
More Information
  • Corresponding author: 18740772907@163.com
  • Received Date: 07 Feb 2024
  • Rev Recd Date: 13 Mar 2024
  • Accepted Date: 22 Apr 2024
  • Available Online: 10 May 2024
  • In dynamic head scenes, current non-contact blood oxygen saturation measurement methods have low accuracy. To solve this problem, we propose a denoising method based on improved adaptive noise complete set empirical mode decomposition and wavelet threshold. This method aims to extract pulse wave signals with a high signal-to-noise ratio. Firstly, in order to solve the problem of false components and mode aliasing in the early stage of decomposition and reconstruction, white Gaussian noise is added to the decomposition process to make it become an improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), to reduce the residual noise in the modal components. Then, ICEEMDAN is used to perform mode decomposition of pulse wave signals of red and blue channels. The db8 wavelet basis function is used to perform 3-stage decomposition and reconstruction on components within the blood oxygen spectrum range. The reconstructed signals are used for subsequent calculation of blood oxygen value. Finally, the experimental comparison and analysis of the blood oxygen saturation results measured in different dynamic head scenes show that the average error of blood oxygen saturation obtained in different head scenes is 0.73%, which is 1.93% lower than the average error of other algorithms. The denoising method proposed in this paper has good stability in different head scenes and can meet the needs of daily blood oxygen saturation measurement.

     

  • loading
  • [1]
    STRUYF T, DEEKS J J, DINNES J, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease[J]. Cochrane Database of Systematic Reviews, 2020, 7(7): CD013665.
    [2]
    MORO E, PRIORI A, BEGHI E, et al. The international European Academy of Neurology survey on neurological symptoms in patients with COVID-19 infection[J]. European Journal of Neurology, 2020, 27(9): 1727-1737. doi: 10.1111/ene.14407
    [3]
    TAMURA T. Current progress of photoplethysmography and SPO2 for health monitoring[J]. Biomedical Engineering Letters, 2019, 9(1): 21-36. doi: 10.1007/s13534-019-00097-w
    [4]
    ALHARBI S, HU S, MULVANEY D, et al. Oxygen saturation measurements from green and orange illuminations of multi-wavelength optoelectronic patch sensors[J]. Sensors, 2019, 19(1): 118.
    [5]
    BAL U. Non-contact estimation of heart rate and oxygen saturation using ambient light[J]. Biomedical Optics Express, 2015, 6(1): 86-97. doi: 10.1364/BOE.6.000086
    [6]
    荣猛, 范强, 李凯扬. 基于IPPG非接触式生理参数测量算法的研究[J]. 生物医学工程研究,2018,37(1):27-31,35.

    RONG M, FAN Q, LI K Y. Study on the measurement algorithm of contactless physiological parameter based on imaging photoplenthysmography[J]. Journal of Biomedical Engineering Research, 2018, 37(1): 27-31,35. (in Chinese).
    [7]
    AL-NAJI A, KHALID G A, MAHDI J F, et al. Non-Contact SpO2 prediction system based on a digital camera[J]. Applied Sciences, 2021, 11(9): 4255. doi: 10.3390/app11094255
    [8]
    WEI B, WU X P, ZHANG CH, et al. Analysis and improvement of non-contact SpO2 extraction using an RGB webcam[J]. Biomedical Optics Express, 2021, 12(8): 5227-5245. doi: 10.1364/BOE.423508
    [9]
    嵇晓强, 刘振瑶, 李炳霖, 等. 面部视频非接触式生理参数感知[J]. 中国光学,2022,15(2):276-285. doi: 10.37188/CO.2021-0157

    JI X Q, LIU ZH Y, LI B L, et al. Non-contact physiological parameters sensing in facial video[J]. Chinese Optics, 2022, 15(2): 276-285. doi: 10.37188/CO.2021-0157
    [10]
    PIRZADA P, MORRISON D, DOHERTY G, et al. Automated remote pulse oximetry system (ARPOS)[J]. Sensors, 2022, 22(13): 4974. doi: 10.3390/s22134974
    [11]
    HU M, WU X, WANG X H, et al. Contactless blood oxygen estimation from face videos: A multi-model fusion method based on deep learning[J]. Biomedical Signal Processing and Control, 2023, 81: 104487. doi: 10.1016/j.bspc.2022.104487
    [12]
    KONG L Q, ZHAO Y J, DONG L Q, et al. Non-contact detection of oxygen saturation based on visible light imaging device using ambient light[J]. Optics Express, 2013, 21(15): 17464-17471. doi: 10.1364/OE.21.017464
    [13]
    吴其献, 胡玉斐, 李攻科. 可穿戴光谱传感器在医疗监测中的研究进展[J]. 分析化学,2024(4):449-459.

    WU Qi-Hsian, HU Yu-Fei, LI Tie-Ke. Research progress of wearable spectroscopic sensors in medical monitoring[J]. Analytical Chemistry, 2024(4): 449-459. (in Chinese).
    [14]
    VIOLA P, JONES M J, SNOW D. Detecting pedestrians using patterns of motion and appearance[J]. International Journal of Computer Vision, 2005, 63(2): 153-161. doi: 10.1007/s11263-005-6644-8
    [15]
    MSTAFA R J, ELLEITHY K M. A video steganography algorithm based on Kanade-Lucas-Tomasi tracking algorithm and error correcting codes[J]. Multimedia Tools and Applications, 2016, 75(17): 10311-10333. doi: 10.1007/s11042-015-3060-0
    [16]
    KHANAM F T Z, AL-NAJI A, CHAHL J. Remote monitoring of vital signs in diverse non-clinical and clinical scenarios using computer vision systems: A review[J]. Applied Sciences, 2019, 9(20): 4474. doi: 10.3390/app9204474
    [17]
    向宪昕, 孙华悦, 柴会宁, 等. 基于智能手机的可视化生物传感器在即时检测中的研究进展[J]. 分析化学,2024(2):145-156.

    XIANXIN XIANG, HUAYUE SUN, HUINING CHAI, et al. Advances in smartphone-based visual biosensors for immediate detection[J]. Analytical Chemistry, 2024(2): 145-156. (in Chinese).
    [18]
    NIU X S, HU H, SHAN SH G, et al. VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video[C]. Proceedings of the 14th Asian Conference on Computer Vision, Springer, 2018: 562-576.
    [19]
    NIU X S, SHAN SH G, HAN H, et al. RhythmNet: End-to-end heart rate estimation from face via spatial-temporal representation[J]. IEEE Transactions on Image Processing, 2020, 29: 2409-2423. doi: 10.1109/TIP.2019.2947204
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views(320) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return