YUAN Jian, PEI Si-yu, HUO Zhan-wei, ZHANG Guan-chen, ZHANG Lei. Design of the central support structure of a large aperture mirror with a wide working temperature[J]. Chinese Optics, 2025, 18(1): 150-159. doi: 10.37188/CO.2024-0060
Citation: YUAN Jian, PEI Si-yu, HUO Zhan-wei, ZHANG Guan-chen, ZHANG Lei. Design of the central support structure of a large aperture mirror with a wide working temperature[J]. Chinese Optics, 2025, 18(1): 150-159. doi: 10.37188/CO.2024-0060

Design of the central support structure of a large aperture mirror with a wide working temperature

cstr: 32171.14.CO.2024-0060
Funds:  Supported by Science and Technology Development Plan Project of Jilin Province (No. 20210509052RQ)
More Information
  • Corresponding author: zhanglei@jl1.cn
  • Received Date: 25 Mar 2024
  • Rev Recd Date: 09 Apr 2024
  • Accepted Date: 12 Jul 2024
  • Available Online: 21 Aug 2024
  • In order to improve the communication quality of LEO-OGS laser links, commercial ground station telescopes equipped with large aperture primary mirrors must be able to withstand extreme outdoor temperature. A central support scheme using room-temperature vulcanizing silicone rubber was proposed for a high-precision primary mirror with an optical aperture of 500 mm. The mirror is made of microcrystal material, and both of the bushing and the supporting cylinder are made of titanium alloy. A 1-mm-thick adhesive layer is used, which can effectively reduce the thermal stress inside the assembly during temperature changes while unloading the gravity of the mirror blank. The thickness and height of the adhesive layer are determined by optimization. A specially designed fixture can accurately control the shape and thickness of the adhesive layer. The ventilation holes on the bushing promote its full solidification. Simulation analysis indicates that the surface shape accuracy of the primary mirror is 4.199 nm in RMS under 40 °C temperature variation, with 13.748 nm under vertical gravity and 4.187 nm under horizontal gravity, accompanied by the maximum mirror inclination and displacement of 4.722" and 3.597 μm, and the fundamental frequency of the assembly reaches 53.45 Hz. The measured surface shape accuracy of the primary mirror is RMS 0.017λ (λ=632.8 nm). The surface can maintain high precision after extensive heat cycling tests and vacuum coating. The central support structure can significantly improve the temperature adaptability of precise mirrors and has broad application prospects in large-scale ground optoelectronic equipment.

     

  • [1]
    徐月, 刘超, 兰斌, 等. 自适应光学在星地激光通信中的研究进展[J]. 激光与光电子学进展,2023,60(5):0500004.

    XU Y, LIU CH, LAN B, et al. Research progress of adaptive optics in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500004. (in Chinese).
    [2]
    KAMMERER W, GRENFELL P, HYEST L, et al. CLICK mission flight terminal optomechanical integration and testing[J]. Proceedings of SPIE, 2022, 12777: 1277730.
    [3]
    高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
    [4]
    SCHIELER C M, RIESING K M, BILYEU B C, et al. On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat[J]. Proceedings of SPIE, 2023, 12413: 1241302.
    [5]
    谢军, 何锋赟, 王晶, 等. 经纬仪主镜轴向支撑结构仿真与优化[J]. 红外与激光工程,2016,45(S1):S118001. doi: 10.3788/IRLA201645s1.118001

    XIE J, HE F Y, WANG J, et al. Simulation and optimization of axial supporting structures for theodolite primary mirror[J]. Infrared and Laser Engineering, 2016, 45(S1): S118001. (in Chinese). doi: 10.3788/IRLA201645s1.118001
    [6]
    赵天骄, 乔彦峰, 孙宁, 等. 经纬仪主镜在支撑系统下的面形变化[J]. 中国光学,2017,10(4):477-483. doi: 10.3788/co.20171004.0477

    ZHAO T J, QIAO Y F, SUN N, et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 2017, 10(4): 477-483. (in Chinese). doi: 10.3788/co.20171004.0477
    [7]
    张岩, 陈宝刚, 李洪文, 等. 700mm光学望远镜结构设计与分析[J]. 光学技术,2020,46(4):385-390.

    ZHANG Y, CHEN B G, LI H W, et al. Structure design and analysis of 700 mm aperture optical telescope[J]. Optical Technique, 2020, 46(4): 385-390. (in Chinese).
    [8]
    李鑫, 袁健, 龚小雪, 等. 外场热环境作用下地基望远镜温度分布预测[J]. 激光与红外,2023,53(4):589-596.

    LI X, YUAN J, GONG X X, et al. Prediction of temperature distribution of ground-based telescopes under the influence of external thermal environment[J]. Laser & Infrared, 2023, 53(4): 589-596. (in Chinese).
    [9]
    王洪浩, 王建立, 陈涛, 等. 地基大口径望远镜重力弯曲引起的指向变化检测与修正[J]. 光学 精密工程,2022,30(23):3021-3030. doi: 10.37188/OPE.20223023.3021

    WANG H H, WANG J L, CHEN T, et al. Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J]. Optics Precision Engineering, 2022, 30(23): 3021-3030. (in Chinese). doi: 10.37188/OPE.20223023.3021
    [10]
    郭骏立, 安源, 李宗轩, 等. 空间相机反射镜组件的胶结技术[J]. 红外与激光工程,2016,45(3):0313002. doi: 10.3788/irla201645.0313002

    GUO J L, AN Y, LI Z X, et al. Bonding technique of mirror components in space camera[J]. Infrared and Laser Engineering, 2016, 45(3): 0313002. (in Chinese). doi: 10.3788/irla201645.0313002
    [11]
    范志刚, 常虹, 陈守谦. 透镜无热装配中粘结层的设计[J]. 光学精密工程,2011,19(11):2573-2581. doi: 10.3788/OPE.20111911.2573

    FAN ZH G, CHANG H, CHEN SH Q. Design of bonding layer in lens athermal mount[J]. Optics Precision Engineering, 2011, 19(11): 2573-2581. (in Chinese). doi: 10.3788/OPE.20111911.2573
    [12]
    武永见, 刘涌, 孙欣. 柔性支撑式空间反射镜胶接应力分析与消除[J]. 红外与激光工程,2022,51(4):20210496. doi: 10.3788/IRLA20210496

    WU Y J, LIU Y, SUN X. Analysis and elimination of adhesive bonding force of flexible supported space mirror[J]. Infrared and Laser Engineering, 2022, 51(4): 20210496. (in Chinese). doi: 10.3788/IRLA20210496
    [13]
    张家齐, 郭艺博, 张友建, 等. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文),2023,16(3):578-586. doi: 10.37188/CO.2022-0194

    ZHANG J Q, GUO Y B, ZHANG Y J, et al. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. (in Chinese). doi: 10.37188/CO.2022-0194
    [14]
    袁健, 张雷, 姜启福, 等. 1.2 m高轻量化率主反射镜镜坯结构设计[J]. 光电工程,2023,50(4):41-51.

    YUAN J, ZHANG L, JIANG Q F, et al. Structure design of 1.2 m high lightweight primary mirror blank[J]. Opto-Electronic Engineering, 2023, 50(4): 41-51. (in Chinese).
    [15]
    袁健, 张雷. 大型离轴三反相机主镜组件结构设计与验证[J]. 红外与激光工程,2023,52(1):20220363. doi: 10.3788/IRLA20220363

    YUAN J, ZHANG L. Structure design and verification of primary mirror assembly for large off-axis TMA camera[J]. Infrared and Laser Engineering, 2023, 52(1): 20220363. (in Chinese). doi: 10.3788/IRLA20220363
    [16]
    谭淞年, 王福超, 许永森, 等. 航空光电平台两轴快速反射镜结构设计[J]. 光学 精密工程,2022,30(11):1344-1352. doi: 10.37188/OPE.20213000.0757

    TAN S N, WANG F CH, XU Y S, et al. Structure design of two-axis fast steering mirror for aviation optoelectronic platform[J]. Optics Precision Engineering, 2022, 30(11): 1344-1352. (in Chinese). doi: 10.37188/OPE.20213000.0757
  • Relative Articles

    [1]太极计划星间激光通信测距的伪随机码选取[J]. Chinese Optics. doi: 10.37188/CO.2024-0033
    [2]LI Zhi-bin, LI Liang, ZHANG Jian-qiang. Composite fast nonsingular terminal sliding mode control of fast steering mirror[J]. Chinese Optics, 2024, 17(4): 959-970. doi: 10.37188/CO.2023-0203
    [3]GAO Wei-rao, DONG Ke-yan, JIANG Lun. Isolation of single wavelength laser communication terminals[J]. Chinese Optics, 2023, 16(5): 1137-1148. doi: 10.37188/CO.2022-0253
    [4]ZHANG Jia-qi, GUO Yi-bo, ZHANG You-jian, ZHANG Zhi-hua. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194
    [5]FAN Wen-qiang, WANG Zhi-chen, CHEN Bao-gang, LI Hong-wen, CHEN Tao, AN Qi-chang, FAN Lei. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032
    [6]ZHAO Meng, YAN Chang-xiang, WU Cong-jun. Simulation analysis of isolation between laser communication ground test equipments[J]. Chinese Optics, 2020, 13(3): 472-481. doi: 10.3788/CO.2019-0154
    [7]WANG Jun-yao, SONG Yan-song, TONG Shou-feng, JIANG Hui-lin, DONG Yan, DONG Ke-yan, CHANG Shuai. Linkage tracking control technology of space laser communication network mirror[J]. Chinese Optics, 2020, 13(3): 537-546. doi: 10.3788/CO.2019-0176
    [8]LIU He-shan, GAO Rui-hong, LUO Zi-ren, JIN Gang. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. doi: 10.3788/CO.20191203.0486
    [9]DONG Quan-rui, CHEN Tao, GAO Shi-jie, LIU Yong-kai, ZHANG Yu-liang. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270. doi: 10.3788/CO.20191206.1260
    [10]LI Xiang, LIU Ming, WANG Chao, LI Xiao-ming, ZHANG Jia-qi, BAI Yang-yang, MENG Li-xin, ZHANG Li-zhong. Wide temperature range beacon receiver lens for tracking and aiming system of mobile ground station[J]. Chinese Optics, 2018, 11(5): 790-797. doi: 10.3788/CO.20181105.0790
    [11]XU Yi-yun, DONG Ke-yan, AN Yan, ZHU Tian-yuan, YAN Jia. Analysis of the influence of defocus on the field of view of laser communication reception[J]. Chinese Optics, 2018, 11(5): 822-831. doi: 10.3788/CO.20181105.0822
    [12]YANG Cheng-long, YAN Chang-xiang, YANG Yu-fei. Isolation of optical antenna of inter-satellites laser communication terminals[J]. Chinese Optics, 2017, 10(4): 462-468. doi: 10.3788/CO.20171001.0462
    [13]ZENG Fei, GAO Shi-Jie, SAN Xiao-Gang, ZHANG Xin. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1): 65-73. doi: 10.3788/CO.20160901.0065
    [14]LI Zheng-wei, WANG Jian-li, WU Yuan-hao, WANG Guo-cong, LIU Shuai. Method of attitude estimation for space object based on single ground-based telescope[J]. Chinese Optics, 2016, 9(3): 371-378. doi: 10.3788/CO.20160903.0371
    [15]HUANG Long, ZHANG Wen-hui. Error calculation of periscope pointing assembly for laser communication[J]. Chinese Optics, 2015, 8(5): 840-846. doi: 10.3788/CO.20150805.0840
    [16]WU Cong-jun, YAN Chang-xiang, GAO Zhi-liang. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680. doi: 10.3788/CO.20130605.0670
    [17]CHEN Wei, DING Ya-lin, HUI Shou-wen, XU Yong-sen. Design of kinematic mount for SiC scanning reflective mirror[J]. Chinese Optics, 2012, 5(2): 161-166. doi: 10.3788/CO.20120502.0161
    [18]ZHANG Jing-xu. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 2012, 5(4): 327-336. doi: 10.3788/CO.20120504.0327
    [19]ZHANG Jing-xu. Structure types and design principles of ground-based telescope enclosures[J]. Chinese Optics, 2012, 5(2): 126-132. doi: 10.3788/CO.20120502.0126
    [20]LIU Jie, CHEN Tao, WANG Jian-li, DONG Lei. Application of wireless laser communication to high speed video transmission[J]. Chinese Optics, 2010, 3(3): 290-295.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.3 %FULLTEXT: 28.3 %META: 56.6 %META: 56.6 %PDF: 15.1 %PDF: 15.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %其他: 0.5 %其他: 0.5 %Austin: 0.3 %Austin: 0.3 %Central District: 0.3 %Central District: 0.3 %Clemmons: 0.3 %Clemmons: 0.3 %Girard: 0.3 %Girard: 0.3 %Hsinchu County: 0.3 %Hsinchu County: 0.3 %Santo Domingo: 1.0 %Santo Domingo: 1.0 %Seattle: 1.6 %Seattle: 1.6 %Wellesley: 0.5 %Wellesley: 0.5 %上海: 1.3 %上海: 1.3 %中卫: 1.0 %中卫: 1.0 %中山: 0.3 %中山: 0.3 %伊利诺伊州: 0.3 %伊利诺伊州: 0.3 %佛山: 0.3 %佛山: 0.3 %北京: 2.6 %北京: 2.6 %十堰: 0.8 %十堰: 0.8 %华盛顿州: 0.3 %华盛顿州: 0.3 %南京: 1.6 %南京: 1.6 %厦门: 0.3 %厦门: 0.3 %吉林: 1.6 %吉林: 1.6 %呼和浩特: 0.3 %呼和浩特: 0.3 %哥伦布: 0.8 %哥伦布: 0.8 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 2.3 %天津: 2.3 %宁波: 1.0 %宁波: 1.0 %宝鸡: 0.5 %宝鸡: 0.5 %广州: 1.8 %广州: 1.8 %张家口: 4.9 %张家口: 4.9 %徐州: 0.3 %徐州: 0.3 %德罕: 0.3 %德罕: 0.3 %成都: 0.8 %成都: 0.8 %扬州: 1.0 %扬州: 1.0 %新乡: 0.5 %新乡: 0.5 %昆明: 2.6 %昆明: 2.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.3 %杭州: 1.3 %泰安: 0.3 %泰安: 0.3 %洛杉矶: 0.3 %洛杉矶: 0.3 %济南: 0.5 %济南: 0.5 %深圳: 0.5 %深圳: 0.5 %温州: 0.5 %温州: 0.5 %湖州: 0.3 %湖州: 0.3 %漯河: 2.9 %漯河: 2.9 %白城: 0.8 %白城: 0.8 %白银: 0.3 %白银: 0.3 %石家庄: 1.0 %石家庄: 1.0 %芒廷维尤: 15.6 %芒廷维尤: 15.6 %芝加哥: 2.1 %芝加哥: 2.1 %苏州: 1.6 %苏州: 1.6 %衢州: 0.8 %衢州: 0.8 %西宁: 2.9 %西宁: 2.9 %西安: 2.1 %西安: 2.1 %诺沃克: 0.3 %诺沃克: 0.3 %费利蒙: 0.3 %费利蒙: 0.3 %达曼: 0.5 %达曼: 0.5 %迈阿密: 0.5 %迈阿密: 0.5 %运城: 0.3 %运城: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长春: 19.2 %长春: 19.2 %长沙: 1.0 %长沙: 1.0 %青岛: 1.0 %青岛: 1.0 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他AustinCentral DistrictClemmonsGirardHsinchu CountySanto DomingoSeattleWellesley上海中卫中山伊利诺伊州佛山北京十堰华盛顿州南京厦门吉林呼和浩特哥伦布嘉兴天津宁波宝鸡广州张家口徐州德罕成都扬州新乡昆明朝阳杭州泰安洛杉矶济南深圳温州湖州漯河白城白银石家庄芒廷维尤芝加哥苏州衢州西宁西安诺沃克费利蒙达曼迈阿密运城郑州重庆长春长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views(217) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return