Citation: | LI Jing, LI Ying. Cloud interference removal using information entropy-low-pass-filtering combined mask[J]. Chinese Optics, 2024, 17(5): 1199-1208. doi: 10.37188/CO.2024-0067 |
To mitigate the impact of clouds on sea surface texture analysis in marine remote sensing images, this paper studies the removal of cloud interference using an information entropy-low-pass-filter combined mask. Initially, we analyze the fundamental principles and limitations of the existing remote sensing image declouding algorithms, highlighting their unsuitability for applications requiring high fidelity. Subsequently, we propose a cloud interference removal technology based on information entropy-low-pass filtering combined mask. This technology encompasses destriping procedures with improved moment matching for remote sensing images, local information entropy filtering, and joint low-frequency filtering as correction parameters for each pixel in the images. The algorithm is characterized by low complexity and high time efficiency. Experimental results demonstrate that, compared to existing algorithms, the proposed method significantly enhances texture detail information in thin cloud areas and cloud edges while maintaining low computational complexity. It achieves an image information entropy over 7.8, a contrast ratio exceeding 60, and a mean gradient above 200. In comparisons of image details, the proposed algorithm enhances texture details without introducing artifacts or non-uniformities, thereby meeting the high-fidelity requirements for remote sensing applications.
[1] |
LIU Y F, DENG R R. Ship wakes in optical images[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(8): 1633-1648. doi: 10.1175/JTECH-D-18-0021.1
|
[2] |
XUE F D, JIN W Q, QIU S, et al. Rethinking automatic ship wake detection: state-of-the-art CNN-based wake detection via optical images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5613622.
|
[3] |
DING K Y, YANG J F, LIN H, et al. Towards real-time detection of ships and wakes with lightweight deep learning model in gaofen-3 SAR images[J]. Remote Sensing of Environment, 2023, 284: 113345. doi: 10.1016/j.rse.2022.113345
|
[4] |
WANG D J, LI W M, YAO Y, et al. A fine image motion compensation method for the panoramic TDI CCD camera in remote sensing applications[J]. Optics Communications, 2013, 298-299: 79-82. doi: 10.1016/j.optcom.2013.02.066
|
[5] |
张元贞, 孙晓兵, 骆冬根. 应用于海洋观测的TDI-CCD驱动电路的设计[J]. 大气与环境光学学报,2019,14(5):385-392.
ZHANG Y ZH, SUN X B, LUO D G. Design of driving circuit of TDI-CCD for ocean observation[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 385-392. (in Chinese).
|
[6] |
陶淑苹, 张续严, 冯钦评, 等. 针对广域像移变化的数字时间延迟积分方法[J]. 光学学报,2019,39(9):0911001. doi: 10.3788/AOS201939.0911001
TAO SH P, ZHANG X Y, FENG Q P, et al. Digital time delay and integration method for wide-range image motion variation[J]. Acta Optica Sinica, 2019, 39(9): 0911001. (in Chinese). doi: 10.3788/AOS201939.0911001
|
[7] |
宋明珠. 海洋弱小动态目标光学探测技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.
SONG M Z. Research on optical detection techniques for ocean weak moving targets[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020. (in Chinese).
|
[8] |
LIU N, LI W, TAO R, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10310-10321. doi: 10.1109/TGRS.2019.2933555
|
[9] |
TAO L T, YUAN L, SUN J. SkyFinder: attribute-based sky image search[J]. ACM Transactions on Graphics (TOG), 2009, 28(3): 68.
|
[10] |
KANG X D, HUANG Y F, LI SH T, et al. Extended random walker for shadow detection in very high resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 867-876. doi: 10.1109/TGRS.2017.2755773
|
[11] |
FREY R A, ACKERMAN S A, LIU Y H, et al. Cloud detection with MODIS. part I: improvements in the MODIS cloud mask for collection 5[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7): 1057-1072. doi: 10.1175/2008JTECHA1052.1
|
[12] |
ACKERMAN S A, HOLZ R E, FREY R, et al. Cloud detection with MODIS. part II: validation[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7): 1073-1086. doi: 10.1175/2007JTECHA1053.1
|
[13] |
IRISH R R, BARKER J L, GOWARD S N, et al. Characterization of the landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(10): 1179-1188.
|
[14] |
HUANG CH Q, THOMAS N, GOWARD S N, et al. Automated masking of cloud and cloud shadow for forest change analysis using Landsat images[J]. International Journal of Remote Sensing, 2010, 31(20): 5449-5464. doi: 10.1080/01431160903369642
|
[15] |
张舒宁, 张浩, 张兵, 等. 一种适合高光谱卫星云识别的Fmask改进算法[J]. 光学学报,2023,43(24):2428009.
ZHANG SH N, ZHANG H, ZHANG B, et al. An improved Fmask algorithm for cloud detection applied to hyperspectral satellite[J]. Acta Optica Sinica, 2023, 43(24): 2428009. (in Chinese).
|
[16] |
姜琪, 代晶晶, 田淑芳. WorldView-3单景影像去云处理对比研究[J]. 测绘科学,2021,46(8):141-147.
JIANG Q, DAI J J, TIAN SH F. Comparative study on cloud removal of WorldView-3 single scene images[J]. Science of Surveying and Mapping, 2021, 46(8): 141-147. (in Chinese).
|
[17] |
BAI T, LI D R, SUN K M, et al. Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion[J]. Remote Sensing, 2016, 8(9): 715. doi: 10.3390/rs8090715
|
[18] |
MOVIA A, BEINAT A, CROSILLA F. Shadow detection and removal in RGB VHR images for land use unsupervised classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 485-495. doi: 10.1016/j.isprsjprs.2016.05.004
|
[19] |
TIAN B, AZIMI-SADJADI M R, VONDER HAAR T H, et al. Temporal updating scheme for probabilistic neural network with application to satellite cloud classification[J]. IEEE Transactions on Neural Networks, 2000, 11(4): 903-920. doi: 10.1109/72.857771
|
[20] |
TAN K, ZHANG Y J, TONG X. Cloud extraction from Chinese high resolution satellite imagery by probabilistic latent semantic analysis and object-based machine learning[J]. Remote Sensing, 2016, 8(11): 963. doi: 10.3390/rs8110963
|
[21] |
逄淑林, 孙林, 杜永明, 等. 全谱段光谱成像仪遥感影像云检测算法[J]. 激光与光电子学进展,2023,60(22):2228003.
PANG SH L, SUN L, DU Y M, et al. Cloud-detection algorithm for images obtained using the visual and infrared multispectral imager[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2228003. (in Chinese).
|
[22] |
葛曙乐, 董胜越, 孙根云, 等. 一种适用于高分五号全谱段光谱成像仪影像的云检测算法[J]. 上海航天,2019,36(S2):204-209.
GE SH L, DONG SH Y, SUN G Y, et al. Cloud detection algorithm for images of visual and infrared multispectral imager[J]. Aerospace Shanghai, 2019, 36(S2): 204-209. (in Chinese).
|
[23] |
吴代强, 何涛. 基于Landsat8样本数据库的高分五号影像云识别[C]. 第七届高分辨率对地观测学术年会论文集. 高分辨率对地观测学术联盟, 2020: 11.
WU D Q, HE T. GaoFen-5 image cloud detection based on landsat8 sample database[C]. The 7th China High Resolution Earth Observation Conference. Academic Alliance for High Resolution Earth Observation, 2020: 11. (in Chinese).
|
[24] |
陶淑苹, 金光, 张贵祥, 等. 实现遥感相机自主辨云的小波SCM算法[J]. 测绘学报,2011,40(5):598-603.
TAO SH P, JIN G, ZHANG G X, et al. A wavelet SCM algorithm used to detect cloud in remote sensing cameras[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5): 598-603. (in Chinese).
|
[25] |
王诗尧. 单幅遥感图像去薄云算法研究[D]. 武汉: 武汉大学, 2017.
WANG SH Y. Research on thin cloud removal for single aerial images[D]. Wuhan: Wuhan University, 2017. (in Chinese).
|
[26] |
刘子力, 杨家俊, 王文静, 等. 遥感图像云检测方法综述[J]. 中国空间科学技术,2023,43(1):1-17. doi: 10.11728/cjss2023.01.yg02
LIU Z L, YANG J J, WANG W J, et al. Cloud detection methods for remote sensing images: a survey[J]. Chinese Space Science and Technology, 2023, 43(1): 1-17. (in Chinese). doi: 10.11728/cjss2023.01.yg02
|
[27] |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
|
[28] |
ZHU H, CHAN F H Y, LAM F K. Image contrast enhancement by constrained local histogram equalization[J]. Computer Vision and Image Understanding, 1999, 73(2): 281-290. doi: 10.1006/cviu.1998.0723
|
[29] |
CHENG H D, SHI X J. A simple and effective histogram equalization approach to image enhancement[J]. Digital Signal Processing, 2004, 14(2): 158-170. doi: 10.1016/j.dsp.2003.07.002
|